001     190029
005     20240711113640.0
024 7 _ |a 10.1088/0029-5515/54/4/043011
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000333666700015
|2 WOS
037 _ _ |a FZJ-2015-02992
082 _ _ |a 530
100 1 _ |a Wongrach, K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Measurement of synchrotron radiation from runaway electrons during the TEXTOR tokamak disruptions
260 _ _ |a Vienna
|c 2014
|b IAEA
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1430724363_23238
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Investigations of runaway electrons (REs) during induced disruptions are performed at the TEXTOR tokamak. The synchrotron radiation generated by REs in the plasma core is detected using an infrared camera. The measurements enable the observation of the structure and dynamics of the runaway beam. In particular, the runaway beam is investigated as a function of the vertical and horizontal control fields. From the plasma current a runaway number of 4.33 × 1016 was calculated. The number of REs with energies exceeding 25 MeV is 6.4 × 1015 according to the synchrotron measurement at the end of the current quench phase. The mean pitch angle of the >25 MeV runaways is found to be 52 mrad which is smaller than in the low density discharge scenario. In addition, the synchrotron measurements show for the first time that a significant number of the high energy REs can survive after the end of the current plateau phase. In order to understand this, runaway orbit calculations have been performed which are in good agreement with the measurements.
536 _ _ |a 132 - Tokamak physics for ITER and beyond (POF2-132)
|0 G:(DE-HGF)POF2-132
|c POF2-132
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Finken, K. H.
|0 P:(DE-Juel1)130009
|b 1
700 1 _ |a Abdullaev, S. S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Koslowski, R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Willi, O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zeng, L.
|0 P:(DE-Juel1)145673
|b 5
773 _ _ |a 10.1088/0029-5515/54/4/043011
|g Vol. 54, no. 4, p. 043011 -
|0 PERI:(DE-600)2037980-8
|n 4
|p 043011
|t Nuclear fusion
|v 54
|y 2014
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/190029/files/0029-5515_54_4_043011.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190029/files/0029-5515_54_4_043011.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:190029
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130009
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-172
|2 G:(DE-HGF)POF3-100
|v Tokamak Physics
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-132
|2 G:(DE-HGF)POF2-100
|v Tokamak physics for ITER and beyond
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21