000190031 001__ 190031
000190031 005__ 20240711113641.0
000190031 0247_ $$2doi$$a10.1063/1.4872173
000190031 0247_ $$2ISSN$$a1070-664X
000190031 0247_ $$2ISSN$$a1089-7674
000190031 0247_ $$2WOS$$aWOS:000337107200099
000190031 0247_ $$2Handle$$a2128/18174
000190031 037__ $$aFZJ-2015-02994
000190031 082__ $$a530
000190031 1001_ $$0P:(DE-HGF)0$$aSpizzo, G.$$b0$$eCorresponding Author
000190031 245__ $$aEdge ambipolar potential in toroidal fusion plasmas
000190031 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2014
000190031 3367_ $$2DRIVER$$aarticle
000190031 3367_ $$2DataCite$$aOutput Types/Journal article
000190031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430726809_23236
000190031 3367_ $$2BibTeX$$aARTICLE
000190031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190031 3367_ $$00$$2EndNote$$aJournal Article
000190031 520__ $$aA series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field Er(r=a,θ,ϕ) in the RFX reversed-field pinch show that Er has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt , maps show a sinusoidal dependence as a function of u, Er=E˜rsin u . The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of Er . From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ˜sin u . On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ i  ≫ ρ e ). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
000190031 536__ $$0G:(DE-HGF)POF2-132$$a132 - Tokamak physics for ITER and beyond (POF2-132)$$cPOF2-132$$fPOF II$$x0
000190031 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000190031 7001_ $$0P:(DE-HGF)0$$aVianello, N.$$b1
000190031 7001_ $$0P:(DE-HGF)0$$aWhite, R. B.$$b2
000190031 7001_ $$0P:(DE-Juel1)4461$$aAbdullaev, Sadrilla$$b3
000190031 7001_ $$0P:(DE-HGF)0$$aAgostini, M.$$b4
000190031 7001_ $$0P:(DE-HGF)0$$aCavazzana, R.$$b5
000190031 7001_ $$0P:(DE-HGF)0$$aCiaccio, G.$$b6
000190031 7001_ $$0P:(DE-HGF)0$$aPuiatti, M. E.$$b7
000190031 7001_ $$0P:(DE-HGF)0$$aScarin, P.$$b8
000190031 7001_ $$0P:(DE-Juel1)6790$$aSchmitz, O.$$b9
000190031 7001_ $$0P:(DE-HGF)0$$aSpolaore, M.$$b10
000190031 7001_ $$0P:(DE-HGF)0$$aTerranova, D.$$b11
000190031 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4872173$$gVol. 21, no. 5, p. 056102 -$$n5$$p056102 $$tPhysics of plasmas$$v21$$x1089-7674$$y2014
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.pdf$$yOpenAccess
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.gif?subformat=icon$$xicon$$yOpenAccess
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000190031 909CO $$ooai:juser.fz-juelich.de:190031$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000190031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4461$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000190031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6790$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000190031 9132_ $$0G:(DE-HGF)POF3-172$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vTokamak Physics$$x0
000190031 9131_ $$0G:(DE-HGF)POF2-132$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak physics for ITER and beyond$$x0
000190031 9141_ $$y2014
000190031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190031 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190031 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000190031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000190031 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000190031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190031 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000190031 9801_ $$aFullTexts
000190031 980__ $$ajournal
000190031 980__ $$aVDB
000190031 980__ $$aUNRESTRICTED
000190031 980__ $$aI:(DE-Juel1)IEK-4-20101013
000190031 981__ $$aI:(DE-Juel1)IFN-1-20101013