000190031 001__ 190031 000190031 005__ 20240711113641.0 000190031 0247_ $$2doi$$a10.1063/1.4872173 000190031 0247_ $$2ISSN$$a1070-664X 000190031 0247_ $$2ISSN$$a1089-7674 000190031 0247_ $$2WOS$$aWOS:000337107200099 000190031 0247_ $$2Handle$$a2128/18174 000190031 037__ $$aFZJ-2015-02994 000190031 082__ $$a530 000190031 1001_ $$0P:(DE-HGF)0$$aSpizzo, G.$$b0$$eCorresponding Author 000190031 245__ $$aEdge ambipolar potential in toroidal fusion plasmas 000190031 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2014 000190031 3367_ $$2DRIVER$$aarticle 000190031 3367_ $$2DataCite$$aOutput Types/Journal article 000190031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430726809_23236 000190031 3367_ $$2BibTeX$$aARTICLE 000190031 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000190031 3367_ $$00$$2EndNote$$aJournal Article 000190031 520__ $$aA series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field Er(r=a,θ,ϕ) in the RFX reversed-field pinch show that Er has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt , maps show a sinusoidal dependence as a function of u, Er=E˜rsin u . The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of Er . From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ˜sin u . On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ i ≫ ρ e ). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation. 000190031 536__ $$0G:(DE-HGF)POF2-132$$a132 - Tokamak physics for ITER and beyond (POF2-132)$$cPOF2-132$$fPOF II$$x0 000190031 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000190031 7001_ $$0P:(DE-HGF)0$$aVianello, N.$$b1 000190031 7001_ $$0P:(DE-HGF)0$$aWhite, R. B.$$b2 000190031 7001_ $$0P:(DE-Juel1)4461$$aAbdullaev, Sadrilla$$b3 000190031 7001_ $$0P:(DE-HGF)0$$aAgostini, M.$$b4 000190031 7001_ $$0P:(DE-HGF)0$$aCavazzana, R.$$b5 000190031 7001_ $$0P:(DE-HGF)0$$aCiaccio, G.$$b6 000190031 7001_ $$0P:(DE-HGF)0$$aPuiatti, M. E.$$b7 000190031 7001_ $$0P:(DE-HGF)0$$aScarin, P.$$b8 000190031 7001_ $$0P:(DE-Juel1)6790$$aSchmitz, O.$$b9 000190031 7001_ $$0P:(DE-HGF)0$$aSpolaore, M.$$b10 000190031 7001_ $$0P:(DE-HGF)0$$aTerranova, D.$$b11 000190031 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4872173$$gVol. 21, no. 5, p. 056102 -$$n5$$p056102 $$tPhysics of plasmas$$v21$$x1089-7674$$y2014 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.pdf$$yOpenAccess 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.gif?subformat=icon$$xicon$$yOpenAccess 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000190031 8564_ $$uhttps://juser.fz-juelich.de/record/190031/files/1.4872173.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000190031 909CO $$ooai:juser.fz-juelich.de:190031$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000190031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4461$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000190031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6790$$aForschungszentrum Jülich GmbH$$b9$$kFZJ 000190031 9132_ $$0G:(DE-HGF)POF3-172$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vTokamak Physics$$x0 000190031 9131_ $$0G:(DE-HGF)POF2-132$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak physics for ITER and beyond$$x0 000190031 9141_ $$y2014 000190031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000190031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000190031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000190031 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000190031 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000190031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000190031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000190031 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000190031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000190031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000190031 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000190031 9801_ $$aFullTexts 000190031 980__ $$ajournal 000190031 980__ $$aVDB 000190031 980__ $$aUNRESTRICTED 000190031 980__ $$aI:(DE-Juel1)IEK-4-20101013 000190031 981__ $$aI:(DE-Juel1)IFN-1-20101013