000190038 001__ 190038
000190038 005__ 20210129215516.0
000190038 0247_ $$2doi$$a10.1021/acsnano.5b01463
000190038 0247_ $$2ISSN$$a1936-0851
000190038 0247_ $$2ISSN$$a1936-086X
000190038 0247_ $$2WOS$$aWOS:000355383000085
000190038 037__ $$aFZJ-2015-02997
000190038 082__ $$a540
000190038 1001_ $$0P:(DE-HGF)0$$aSofer, Zdeněk$$b0$$eCorresponding Author
000190038 245__ $$aInsight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key
000190038 260__ $$aWashington, DC$$bSoc.$$c2015
000190038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435329755_10156
000190038 3367_ $$2DataCite$$aOutput Types/Journal article
000190038 3367_ $$00$$2EndNote$$aJournal Article
000190038 3367_ $$2BibTeX$$aARTICLE
000190038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190038 3367_ $$2DRIVER$$aarticle
000190038 520__ $$aFor the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatographymass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.
000190038 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000190038 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000190038 7001_ $$0P:(DE-HGF)0$$aJankovský, Ondřej$$b1
000190038 7001_ $$0P:(DE-HGF)0$$aŠimek, Petr$$b2
000190038 7001_ $$0P:(DE-HGF)0$$aSedmidubský, David$$b3
000190038 7001_ $$0P:(DE-HGF)0$$aŠturala, Jiří$$b4
000190038 7001_ $$0P:(DE-HGF)0$$aKosina, Jiří$$b5
000190038 7001_ $$0P:(DE-HGF)0$$aMikšová, Romana$$b6
000190038 7001_ $$0P:(DE-HGF)0$$aMacková, Anna$$b7
000190038 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b8$$ufzj
000190038 7001_ $$0P:(DE-HGF)0$$aPumera, Martin$$b9$$eCorresponding Author
000190038 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5b01463$$gp. 150430074759007 -$$n5$$p 5478–5485$$tACS nano$$v9$$x1936-086X$$y2015
000190038 8564_ $$uhttp://pubs.acs.org/doi/full/10.1021/acsnano.5b01463
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.pdf$$yRestricted
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.gif?subformat=icon$$xicon$$yRestricted
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-180$$xicon-180$$yRestricted
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-640$$xicon-640$$yRestricted
000190038 8564_ $$uhttps://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.pdf?subformat=pdfa$$xpdfa$$yRestricted
000190038 909CO $$ooai:juser.fz-juelich.de:190038$$pVDB
000190038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000190038 9130_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000190038 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000190038 9141_ $$y2015
000190038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190038 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000190038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000190038 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000190038 920__ $$lyes
000190038 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000190038 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000190038 980__ $$ajournal
000190038 980__ $$aVDB
000190038 980__ $$aI:(DE-Juel1)PGI-9-20110106
000190038 980__ $$aI:(DE-82)080009_20140620
000190038 980__ $$aUNRESTRICTED