001     190038
005     20210129215516.0
024 7 _ |a 10.1021/acsnano.5b01463
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a WOS:000355383000085
|2 WOS
037 _ _ |a FZJ-2015-02997
082 _ _ |a 540
100 1 _ |a Sofer, Zdeněk
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key
260 _ _ |a Washington, DC
|c 2015
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435329755_10156
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatographymass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Jankovský, Ondřej
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Šimek, Petr
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sedmidubský, David
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Šturala, Jiří
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kosina, Jiří
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mikšová, Romana
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Macková, Anna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 8
|u fzj
700 1 _ |a Pumera, Martin
|0 P:(DE-HGF)0
|b 9
|e Corresponding Author
773 _ _ |a 10.1021/acsnano.5b01463
|g p. 150430074759007 -
|0 PERI:(DE-600)2383064-5
|n 5
|p 5478–5485
|t ACS nano
|v 9
|y 2015
|x 1936-086X
856 4 _ |u http://pubs.acs.org/doi/full/10.1021/acsnano.5b01463
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190038/files/acsnano.5b01463.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:190038
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128613
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21