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Validity of the single-particle description and charge noise resilience for multielectron quantum dots
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We construct an optimal set of single-particle states for few-electron quantum dots (QDs) using the method of
natural orbitals (NOs). The NOs include also the effects of the Coulomb repulsion between electrons. We find
that they agree well with the noniteracting orbitals for GaAs QDs of realistic parameters, while the Coulomb
interactions only rescale the radius of the NOs compared to the noninteracting case. We use NOs to show that
four-electron QDs are less susceptible to charge noise than their two-electron counterparts.
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I. INTRODUCTION

Quantum dots (QDs) are zero dimensional quantum sys-
tems with many characteristic properties of atoms [1-3]; for
example, an energy shell structure was found using transport
measurements [4—6]. We are interested in the potential to store
quantum information [7] using the electron spin of QDs [8,9].
We consider the electron configurations of a gate-defined QD
with the lowest energies as a realization of a quantum memory.
Specifically we discuss a two-electron configuration of a QD,
where the low-energy properties are described by a singlet state
and the triplet states. The s, = 0 subspace is two dimensional
and defines a qubit [10], which we call singlet-triplet qubit
(STQ) in the following [11].

STQs realize universal quantum computation for an array of
QDs when the transfer of electrons between neighboring QDs
is permitted [11-13]. Many experiments have shown that high-
fidelity quantum gates can be constructed for STQs encoded
using gate-defined QDs [14-19]. In the following, we only
consider GaAs QDs, which have weak spin-orbit interactions
such that the spin and the orbital parts of QD wave functions are
decoupled. Since we only work with the s, = 0 subspace, we
are able to neglect the Zeeman interaction and always consider
the s, = 0 triplet without further distinguishing it from other
triplet states.

The Coulomb interactions between electrons, and con-
sequently correlation effects for QD electrons, are more
important compared to electrons bound to atoms because
the sizes of the QD wave functions are larger than atomic
wave functions [20]. Early descriptions of QDs assumed that
Coulomb interactions provide a large energy contribution to
each electron that is added to a QD, but the magnitude of
this energy contribution is independent of the electron config-
uration [21,22]. Very often such a description is insufficient
because correlations can induce novel effects in the energy
spectrum of QDs [23,24]. Even more, it has been pointed out
that correlations can provide all the necessary gate operations
for universal quantum computation [25-27].
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Weakly correlated quantum systems can be described in
a mean-field approximation, as for Hartree-Fock calculations
(cf.,, e.g., Ref. [3]). Mean-field calculations are simple, and
also the wave functions of multielectron QDs can be con-
structed [28,29]. Hartree-Fock wave functions are, however,
restricted to a single Slater determinant, and a Hartree-Fock
description usually fails to correctly describe strongly corre-
lated quantum systems. Large correlations are expected for
weakly confined QDs [30]. Even for realistic QD parameters,
numerical calculations proved the failure of Hartree-Fock
calculations [31].

Computationally powerful methods have been developed
to describe the correlation effects of few-electron QDs [32].
Very often a full-configuration interaction (full-CI) method is
used to analyze QD wave functions [33]. Full-CI calculations
diagonalize the QD Hamiltonian using a large subspace of
possible QD eigenfunctions. The predicted eigenfunctions of
the QDs are exact in the chosen basis, but a highly accurate
prediction of the ground state wave function requires a large
set of basis states. We show that interaction effects for QDs
can be described more efficiently using an optimized basis set
for CI calculations. Lowdin described a method to construct
effective orbital wave functions for an interaction quantum
system, which are called the natural orbitals (NOs) [34]. It is
well known in quantum chemistry that these orbitals are an
optimal basis for CI calculations [35,36].

We show that few-electron QDs can be described very
efficiently using Lowdin’s NOs. Starting from a full-CI
analysis of QDs, we derive the NOs for realistic GaAs QDs.
We find that the NOs with the highest occupations have
a very transparent interpretation because they resemble the
noninteracting eigenstates of QDs that have been rescaled as a
consequence of Coulomb interactions. The explicit construc-
tions of NOs will also provide an analytical description of
few-electron QDs. The NO description is a comprehensive
tool to analyze QDs without disregarding correlation effects,
and we point out that NOs can be constructed independently
from a full-CI calculation [35,36].

Finally, the NO description is applied to study the coherence
properties of STQs. We focus on charge noise because
fluctuating electric potentials directly couple to the qubit’s
wave functions and are one of the limiting obstacles to realizing
a quantum memory [13,37,38]. Reference [39] predicted a
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perfect insensitivity to charge noise of a STQ that is encoded
using a four-electron QD [40]. The noise protection was
derived from a shell filling model for noninteracting QD
electrons [2]. We find that the four-electron configuration
remains noise insensitive even in the presence of Coulomb
interactions because the NOs match very closely to non-
interacting QD eigenstates. When Coulomb interactions are
included in the description of QD electrons, we find nearly an
order of magnitude increase in coherence for a four-electron
STQ compared to a two-electron STQ.

The organization of the paper is as follows. Section II
introduces a model to describe few-electron QDs using the
noninteracting eigenfunctions of a QD. This model predicts
a high protection from charge noise for STQs encoded
using four-electron QDs. Section III analyzes interacting QD
electrons using NOs, which confirms the validity of the
noninteracting shell filling model. We also characterize the use
of NOs in CI calculations. Section IV describes the coherence
properties of few electron QDs under charge noise. We find
that a four-electron STQ is better protected from charge noise
than a two-electron STQ, as predicted from noninteracting QD
electrons. Section V summarizes the findings of the paper.

II. DESCRIPTION OF NONINTERACTING
FEW-ELECTRON QUANTUM DOTS

A starting description of few-electron QDs is obtained using
the noninteracting eigenstates of a QD. We consider the single-
particle Hamiltonian
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of a harmonic confining potential in two dimensions with the
strength hwo and 7 = (x,y)”. The orbital contributions of a
magnetic field are introduced through the vector potential in
the symmetric gauge A = %(y, —x,0)7. The out-of-plane
magnetic field appears in the QD Hamiltonian of Eq. (1)
through the cyclotron frequency w, = % It gives an addi-
tional contribution to the harmonic confinement in the second
term of Eq. (1). Additionally it distinguishes the motion of
clockwise and counterclockwise circulating electrons through
the orbital moment [, = ;i(xay — y0y).
The eigenvectors of Eq. (1) are the Fock-Darwin states (FD
states) [41,42]
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with Q = | /a)(z) + (%)2. Lﬁl(x) are the generalized Laguerre
polynomials. The FD states are described by the orbital
quantum number n and the magnetic quantum number / [1].
As in atomic physics, ¥, (r) are grouped into orbital shells.
The eigenenergies of v, (r) are E,; = 2n + |l| + 1)hQ2 —
lhT‘“ Figure 1 shows the eigenenergies of the FD states as
a function of the out-of-plane magnetic field B, for a GaAs
QD with a typical confining strength, iwy = 3 meV [43], and
a QD electron with the effective mass m = 0.067m,, where
m, is the electron mass. In the absence of magnetic fields,
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FIG. 1. (Color online) Noninteracting orbital energy spectrum of
a harmonic QD for the confining strength hwo = 3 meV and out-of-
plane magnetic fields B, according to Eq. (1). The eigenstates are
the FD states |n,/) that are described by the orbital quantum number
n and the magnetic quantum number /. For B, = 0, the FD states
are grouped into atomic shells. We label the nondegenerate lowest
shell as K shell and the doubly degenerate first-excited shell as L
shell. Out-of-plane magnetic fields lift the degeneracies. The QD
parameters from the highlighted region protect a four-electron STQ
from charge noise, as described in the main text.

a highly regular level spectrum is observed, where we label
the orbitally nondegenerate ground state as K shell and the
doubly degenerate first-excited states as L shell. The orbital
components of the out-of-plane magnetic fields lift all the
degeneracies in the energy spectrum, and there is a crossing
of energy levels from different energy shells at even higher
magnetic fields. In the case of very high magnetic fields
(several tesla), the quantum Hall regime is approached with the
well-known interpretation of the FD states as Landau levels.

We study the limit of moderate magnetic fields, where
all the state degeneracies are lifted, but the L shell has not
been crossed by a state from a different shell yet (cf. the
highlighted region in Fig. 1). We quickly review the noise
protection criterion from Ref. [39]. In the noninteracting shell
filling model of Ref. [39], for a two-electron QD the electrons
are paired in the same orbital ground state |n,l) = |0,0) in
the singlet configuration, while the Pauli exclusion principle
forbids this configuration for the triplet. Here, only one
electron occupies the orbital ground state |0,0), while the
other electron is in the first excited state |0,1). In the case of
four electrons, the low-energy properties are again well
described with a singlet-triplet configuration. In every case,
two of the four electrons are paired in a “frozen core” in the K
shell, and the remaining two electrons fill the two orbitals from
the L shell. In the singlet configuration, both electrons are in
|0,1), but in the triplet configuration one electron is placed into
|0,1), and the other one in |0,—1).

Charge noise directly couples to the charge densities of the
QD orbitals. The coherence of a STQ is lost if the ground
state orbital has a different charge density from the excited
orbital [39]. In the two-electron configuration, the charge
density of the singlet state differs from the triplet’s charge
density because |0,0) and |0, 1) have different charge densities.
For the four-electron STQ, only the charge densities of |0,1)
and |0, — 1) distinguish the singlet and triplet charge densities
because in every case two electrons are paired in a frozen core
in |0,0). But since |0,1) and |0,—1) are complex conjugate
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of each other, both states have the same charge densities. A
four-electron STQ will therefore be protected from all the
noise sources that couple weakly to the charge configuration
of a QD. A more detailed noise analysis, which also includes
the effects of Coulomb interactions, will be given in Sec. I'V.

III. DESCRIPTION OF INTERACTING FEW-ELECTRON
QUANTUM DOTS

Correlations are important for few-electron QDs, which
would call into question any predictions of an orbital model for
few-electron QDs that is obtained from the noninteracting QD
wave functions. To discuss the validity of the noninteracting
model from Sec. II, we analyze here the eigenfunctions of the
N -particle QDs that we obtain from an exact diagonalization of
the QD Hamiltonian with Coulomb interactions. We use full-
ClI calculations to derive the exact eigenfunctions of interacting
few-electron QDs. The interacting QD problem is solved
in the basis of 50 noninteracting eigenstates from Eq. (2).
Appendix A gives a detailed description of the numerical
procedure. The orbital part of the N-particle wave function
Y(ry,ra, ... ,ry)isused to construct Lowdin’s NOs [34]. For
this, we calculate the first-order density matrix

Q(r’,r)szdr2~... -dry

x (', ra, ... ry), 3

which describes the charge densities and all the single-particle
properties (cf. Appendix B for a description of the method of
reduced density matrices). Note that the probability density

TNV, ...

p(r) = fdrz N, ) 4)

is (up to the normalization factor) directly related to the
first-order density matrix: p(r) = %Q(r,r). The probability
densities always integrate to 1.

The NOs are the set of normalized, orthogonal functions
{¢4(r)} that diagonalize the spectral decomposition of the first-
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order density matrix:

or',r) =) 0us(r )du(r). )

0. are called the occupations numbers of the NOs. The
interpretation as occupation numbers is supported by the sum
rule ), 0o = N [34].

We continue with an analysis of the two-electron singlet
and triplet configurations of a QD using NOs, as in Lowdin’s
study of the helium atom [44]. In all the following discussions,
the NOs are extracted from a full-CI calculation, according to
Appendix A, with the parameters hwy = 3 meV and B, =
0.35 T. These parameters describe typical QDs that are used
in experiments to realize quantum computation with spin
qubits [2,37,43]. Figure 2(a) shows the NOs with the highest
occupation numbers for a two-electron QD. We see that the
intuitive shell filling model is by far more valid in the triplet
configuration. In this case, nearly 99% of the electronic state
occupies the two lowest NOs. In the singlet configuration,
simple assignment of two electrons to the lowest NO is
less valid. Only 89% of the electrons occupy the lowest
NO; two additional NOs need to be added to describe the
state sufficiently. There is a simple explanation for why the
description with a single NO is less valid in the case of
the two-electron singlet compared to the triplet. Because the
spatial wave function of the singlet state is symmetric, the
electrons are always closer together in a doubly occupied
singlet configuration than for any triplet configuration. The
Coulomb repulsion is higher for a doubly occupied orbital,
and a singlet that is restricted to a single NO has a high energy.
The singlet energy can be lowered through virtual excitations,
which add small occupations to excited NOs.

__We find that all NOs still closely correspond to FD states
|n,1), where the Bohr radius ag = Bap is modified compared
to the noninteracting caseag = ,/ meo Note that for a subspace
of NOs with equal occupations, one has the freedom to choose
the basis states such that they match the FD states most closely.

Table 1 summarizes the dominant NOs of the two-electron
configurations. The states |0,0) and |0,1) indeed have the
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FIG. 2. NOs of the lowest energy configurations with s, = 0 of atwo-electron QD and a four-electron QD of hwy = 3 meV and B, = 0.35 T.
In each case, the ground state is a singlet, and the excited state is a triplet. The NOs are ordered by the energy expectation values of the
single-particle Hamiltonian from Eq. (1): E = (Y(ry, ... ry)|h(r)|¥(ry, ... ry)). We interpret all the NOs by rescaled FD states |ﬁv,l). The
dominant NOs (drawn with bold lines) resemble the predictions from a shell filling model: (a) the two-electron singlet has an occupation of
89% in the lowest NO. Two additional NOs with 5.0% occupations are needed to sufficiently describe the singlet. The two-electron triplet
has nearly 99% occupation in the lowest two NOs. All NOs are summarized in Table 1. (b) The four-electron configurations have nearly 50%
occupations in the ground state orbital. We interpret this configuration as a frozen core. The singlet has the dominant remaining occupation
(43.1%) in the next excited NO; the triplet requires two additional NOs (each with 24.4% occupation). In every case, some additional NOs
have occupations of a few percent or less; all NOs are tabulated in Table II.
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TABLE I. Dominant NOs of a two-electron QD in the (a) singlet
and (b) triplet configurations. We interpret the NOs [NO) as FD
states |n,/) according to Eq. (2), where the tilde represents a rescaling

of the Bohr radius ag = /mw0 by ap = Bag. The overlap of |NO)

can be maximized from the FD-overlap = |(n,/|NO)|? to overlap, =
|(r’l\,dl|NO)|2 with the given scaling factor 8. We use g = 1.23 to
calculate overlap, for all the NOs, which allows a comparison of
the NOs with the highest occupatlons (a) The two-electron slnglet
has dominant occupation in |0 0), but the states |0 1) and |0 —1) are
also needed to accurately describe the singlet configuration. (b) The
two-electron triplet has by far the dominant occupation in |(5,7)> and
|(5Tl), which resembles two orbitals filled with one electron each.

(a) Two-electron singlet

State Occupation FD-overlap B Overlap, Overlap,
11,0) 0.8% 90.1% 096 909%  68.7%
10,—1) 5.0% 98.4% 092  999%  85.0%
0, 1) 5.0% 98.4% 092  999%  85.0%
|0,0) 89.0% 95.1% 123 99.6%  99.6%
(b) Two-electron triplet
State  Occupation FD-overlap B Overlap, Overlap,
10,2) 0.5% 97.7% 0.91 99.9%  78.1%
10,—1) 0.5% 96.6% 0.88 999%  80.8%
0,1) 49.4% 99.1% 1.07 100.0%  96.1%
|0,0) 49.4% 98.0% .14 999%  99.3%

highest occupation numbers, and their occupations resemble
the noninteraction shell fillings of FD states. In the singlet
configuration, the dominant electron occupation is in [0,0). In
the triplgL configuration, one electron is in |0,0), and the other
one in |0,1). Note that a scaling factor 8 > 1 was also used in
Ref. [44] to account for correlation effects of the helium atom.

The four-electron STQ should be described by NOs in the
same way as for the two-electron STQ [45]. We analyze the
lowest two configurations of a four-electron QD of hwy =
3 meV and B, = 0.35 T, which are again a singlet and a triplet.
Figure 2(b) shows the dominant NOs with its occupation
numbers. In each case, we expect two electrons to be paired
in |0,0) in a shell filling model. A wave function having this
form would have 50% occupation in the lowest NO. In reality,
the ground state’s occupation is lower, but we find that the
lowest NOs for the singlet and the triplet configurations are
very similar, and they are rescaled FD states |0,0) (cf. Table II).

In the shell filling model, the occupations of the K shell
describe the orbital properties of this STQ. For the singlet,
50% of the charge should be found in |0,1), while for the
triplet 25% of the occupation should be placed each into
|0,1) and into |0,—1). The NOs in Fig. 2(b) and Table II
confirm this model with large occupations in the rescaled FD
states |(f1) and |6,_\—/1). Besides these dominantly occupied
orbitals, we find occupations in exited NOs. Although these
occupations are low, they are still higher than for the two-
electron configurations.

A general implication for a computational analysis is that
just a few NOs are sufficient to describe the properties of
few-electron QDs. Even though each electron configuration
has a distinct set of NOs, the NOs with the highest occupation
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TABLE II. Dominant NOs of a four-electron QD in the (a)
singlet and (b) triplet configurations with the same definitions as in
Table I. B = 1.42 eases the comparison of the NOs with the highest
occupations. In each case, nearly half of the occupation is in |6,VO),
which is interpreted as a core of two electrons. (a) In the singlet
configuration, by far the dominant remaining occupation is in |(5Tl),
which agrees with the picture of two paired electrons in that orbital.
(b) The triplet configuration has one electron in |(f1) (~25%), and
the other one in |0,—1) (*25%).

(a) Four-electron singlet

State Occupation  FD-overlap B Overlap, Overlap,
11,—1) 0.1% 917% 097  922%  29.6%
11,1 0.5% 882% 107  91.8%  49.7%
10,3) 1.6% 99.1% 095  999%  55.3%
10,—2) 0.8% 99.1% 095 100.0%  62.0%
I1,0) 1.0% 86.1%  1.10  90.6%  66.6%
10,2) 3.8% 99.8% 102 100.0%  72.9%
10,—1) 4.5% 95.9% 114  99.6%  90.0%
10,1) 43.1% 882% 126  995%  96.6%
10,0) 44.2% 86.4% 142  994%  99.4%
(b) Four-electron triplet
State Occupation  FD-overlap B Overlap, Overlap,
10,—3) 0.3% 94.0% 088  99.9%  43.9%
11,—1) 0.3% 89.9% 106  91.9%  46.2%
I1,1) 0.3% 89.9% 106  91.9%  463%
10,3) 0.3% 94.1%  0.88  99.9%  43.5%
10,—2) 2.1% 100% 1.00  100% 70.0%
|1,0) 1.0% 86.3% 109  894%  63.9%
10,2) 2.1% 100% 1.00  100% 70.0%
0,—1)  24.4% 89.8% 124  995%  95.6%
10,1) 24.4% 89.8% 124  995%  95.6%
10,0) 44.4% 86.0% 143 994%  99.4%

numbers have a transparent interpretation. These orbitals
represent the FD states with a rescaled Bohr radius. Further, the
NOs with the lowest single particle energies are very similar
in the singlet and triplet configurations of two-electron QDs.
In the four-electron configuration, we find an identical frozen
core for the singlet and triplet, and also the next higher NOs
agree very well in both spin configurations. Based on the NOs
that were derived in the previous calculations, we can compare
the energies of all the electron configurations if we restrict the
CI calculation only to the dominant NOs. Table III lists the
energies of the two-electron and four-electron ground states for
full-CI calculations and for CI calculations that are restricted
to the dominant NOs. When we include the NOs with the
highest occupations, very accurate descriptions of the ground
state energies are obtained. For a two-electron QD, we can
reproduce the results of the full-CI calculation using only four
NOs with the given accuracy. The four-electron configurations
are reliably described when nine NOs are included.

IV. NOISE ANALYSIS OF FEW-ELECTRON
QUANTUM DOTS

We start with a noise analysis for the parameters fiwy =
3meV and B, = 0.35T that were analyzed in the previous
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TABLEIIL. Comparison of the energies of the singlet configuration and the triplet configuration for the two-electron QD and the four-electron
QD at Aiwy =3 meV and B, = 0.35 T (cf. Appendix A for a description of the numerical calculations). (a) The energy of the two-electron
singlet, which is the ground state configuration; (b) the energy of the two-electron triplet state, which is the first excited state of a doubly
occupied QD. The CI calculation with the two dominant NOs from Table I is insufficient to accurately reproduce the results from the full-CI
calculation. Using the four dominant NOs from Table I gives already a very satisfactory description of the energy configuration. We obtain a
similar finding for the four-electron configuration in the (c) singlet and the (d) triplet configurations. The naive description with two (three)
NOs from Table II in the singlet (triplet) configuration is far away from the full-CI results; but adding more NOs from Table II increases the

accuracy of the restricted CI calculations.

(a) Two-electron singlet (b) Two-electron triplet

(c) Four-electron singlet (d) Four-electron triplet

Method Energy (meV) Method Energy (meV) Method Energy (meV) Method Energy (meV)
Full-CI 11.1 Full-CI 12.1 Full-CI 40.3 Full-CI 40.5
2 NOs 11.8 2 NOs 12.6 2 NOs 433 3 NOs 433
4 NOs 11.2 4 NOs 12.1 6 NOs 41.3 5 NOs 419
5 NOs 11.2 6 NOs 12.1 9 NOs 40.6 9 NOs 40.8

section. Figure 3 shows the probability densities p(r) [cf.
Eq. (4)] of the two-electron and the four-electron singlet and
triplet wave functions, which are indeed the two states of
lowest energies in s, = 0. In the case of the two-electron QD,
the singlet and the triplet probability densities are distinct
from each other, which is evident in the different spread
of the charge distributions. The triplet wave function has a
larger spread than the singlet wave function, which is caused
by the Pauli exclusion principle, which forces one electron
into an orbital excited state for the triplet. In the case of the
four-electron QD, the singlet and the triplet wave functions
have very similar probability densities. These findings agree
well with the predictions from the noninteracting orbitals of
QDs which are successively filled using a shell filling method.

Singlet Triplet
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FIG. 3. (Color online) Probability densities p(r), according to
Eq. (4), of the lowest energy states of a two-electron QD and a
four-electron QD with the confining strength Aiwy = 3 meV and B, =
0.35 T. In both cases, the ground state is in a singlet configuration
and the excited state is in a triplet configuration. The dashed lines
show radii where the probability densities drop to 1/e of their
maximal values. The two-electron singlet has a smaller spread of
the charge distribution compared to the triplet configuration. In the
four-electron configuration, the probability densities are very similar
for the singlet and the triplet. All properties can be explained in
shell-filling description using FD states, as explained in the text.

To characterize the degree of similarity between the singlet
and the triplet configurations, we introduce the distance D
between the probability densities of the singlet configuration
ps(r) and the triplet configuration pr(r):

1
D=3 / drlps(r) — pr(r). ©)

D = 1 for two nonoverlapping probability densities, and D =
0 for two identical probability densities. For hwy = 3 meV and
B, = 0.35 T, represented by the probability densities in Fig. 3,
we get D &~ 8 x 1072 for the two-electron configuration and
D ~ 8 x 1073 for the four-electron configuration.

We continue with a quantitative noise analysis for STQs
at various magnetic fields, similar to the study in Ref. [39].
A weak single-particle perturbation A'(r) renormalizes the
energy difference § E g7 between the single |S) and the triplet
|T) states. The leading-order contribution to § Egr is given by
the direct coupling of 4'(r) to |S) and |T') [39]:

N
SEsr = Y |(SIN'(ro)lS) = (TIK (r)IT)]. )

i=1

All operators i'(r) that act only on the spatial part of the wave
function and are velocity independent will only involve the
difference in probability densities of the singlet pg(r) and the
triplet state pr(r):

SEsr = N/drlh’(r)[ps(r) — pr(n]l. ®)

Figure 4 shows the radial dependence of the probability
densities of the two-electron and the four-electron config-
urations of a QD for different out-of-plane magnetic fields
B,. We find that the probability densities of the two-electron
configurations are always differing more strongly from each
other than the probability densities of the four-electron config-
urations. Especially for small |r|, the two-electron singlet and
triplet configurations differ significantly. This finding can be
understood using an orbital description for the QD electrons.
In the singlet configuration, both electrons are placed into the
same orbital and a high charge density is expected close to
the origin. In the triplet configuration, the antisymmetry of the
wave function favors the electrons to be placed further apart
from each other.
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FIG. 4. (Color online) Radial dependency of the singlet’s

[os(|r]), solid lines] and the triplet’s [por(|r|), dashed lines] prob-
ability densities. The curves are shifted relatively to each other for
different out-of-plane magnetic fields B,. (a) The probability densities
of the two-electron QDs are always distinct from each other. (b) For
a four-electron QD, the probability densities are similar at small
magnetic fields, but they differ for larger B,.

In four-electron STQs, the singlet and triplet probability
densities are much more similar to each other than in two-
electron STQs (cf. Fig. 4). Especially in small magnetic fields,
ps(lr]) and pr(|r|) are matching very closely. Larger B,
confine the electrons more strongly, and at some point (>1 T)
levels of higher energy shells are lower in energy than |0,—1)
(cf. Fig. 1). As a consequence, we expect that ps(|r|) and
pr(|r]) become more distinct in increasing B, which is also
found when analyzing the probability densities in Fig. 4.

Charge noise [38,46] dephases STQs while coupling to the
charge densities of the wave functions. A QD is surrounded by
many charge traps, which fluctuate between being empty or
occupied. A charge trap couples to the charge distribution of
the QD and dephases a STQ if the singlet’s charge density
differs from the triplet’s charge density. We can quantify
this difference using the distance measure of the probability
densities D according to Eq. (6). More quantitatively, we
can use the quadrupole moments of the probability density
Q’l/f = fdr rir;jpy(r) of a state ). We approximate the
shifts of the singlet-triplet energy difference §Esr that is
caused by one charge trap according to Eq. (8). We assume that
the charge trap is some distance away from the QD and use a
multipole expansion of the QD’s charge distribution [47]. The
leading contribution to § Egr is caused by the gradient of the
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TABLE IV. Probability densities of the singlet pg(r) and
the triplet pr(r) are compared by the distance measure D =
% f dr|ps(r) — pr(r)| and by their difference of the x component
of the quadrupole moments Q' = [ dr x*p,(r). (a) The probability
densities of two-electron STQs differ significantly. (b) For four-
electron STQs, the probability densities are very similar at small B,.

(a) Two-electron configuration

11_pll
B. (T) D oy - 0} (m?) | oirronr| (%)
0 0.081 —101 8.0
0.35 0.081 —101 8.0
0.7 0.080 —96 7.8
1.05 0.056 —15 1.3
1.4 0.138 —138 13.2
1.75 0.053 6 0.6

(b) Four-electron configuration

11_pll
B. (T) D i - ol (nm?) | orronr| ()
0 0.008 32 0.8
0.35 0.008 27 0.7
0.7 0.044 136 3.6
1.05 0.053 -89 3.2
1.4 0.019 —4 0.1
1.75 0.087 —148 5.7
charge trap’s electric field 9, &;:
Ne ¢
~ ij ij
SEsr ~ 3 Z ’aris.z‘( s T)’ ©
ij=1
Ne
~ —loert+dvel|og' — or ). (10)

Because we consider a charge distribution with rotation
symmetry in the x-y plane and identical probability densities of
ps(r) and pr(r) in the z direction, Q}gl = Q§2 and QIT1 = Q2T2
are the only nontrivial components of the quadrupole tensor.
The distance d between the charge trap and the QD determines

the prefactor in Eq. (10): |0,& + 9y&2| = 4;?%

Table IV shows that the probability densities ps(r) and
pr(r) are always differing strongly for a two-electron QD,
but they can be very similar for a four-electron QD at weak
magnetic fields. For the data in Table IV, B, = 0.35 T is the
optimal value to protect a STQ from charge noise because D
and | Q' — Qj'| are both very small. We explained this finding
by the filling of two NOs that have the same charge densities
in Sec. II. Note that the four-electron STQ also seems to be
equally protected at zero magnetic fields and at B = 0.35 T.
STQs at B =0 will still have poor coherence properties
because the singlet configuration is doubly degenerate. Besides
the electron configuration that is equivalent to two valence
electrons filled into |0,1) [cf. Fig. 2(b)], our numerical
calculation ﬁgd\s/ a state of identical energy for two valence
electrons in |[0,—1) [48].

The STQ encoding in four-electron QDs was considered
to be optimal because the qubit states have identical electrical
moments [39,49]. In a multipole expansion, the coupling of a
charge trap to the electric quadruple moment dominates [47].
Figure 5 approximates the energy shifts § Egr through the
coupling to the quadrupole moments from a single-site charge
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FIG. 5. Shift § Es7 of the energy difference between the singlet
and the triplet states of a two-electron STQ and a four-electron STQ
which is caused by a charge trap that is the distance d away from the
QD center, as approximated by Eq. (10). § Egr is nearly one order of
magnitude larger for the four-electron STQ than for the two-electron
STQ at hwy = 3 meV and B, = 0.35 T. Recall that §Eg;y = 0 for
four-electron STQs in a noninteracting theory.

trap, as derived in Eq. (10). We find that § E g7 is nearly an order
of magnitude larger for the four-electron STQ compared to
the two-electron STQ. While a noninteracting theory predicts
8Esr = 0, interacting electrons still show a strong noise
protection for four-electron STQs.

V. DISCUSSION AND CONCLUSION

We have shown that the shell filling of orbitals describe
the electron configurations of few-electron QDs. We explicitly
studied GaAs QDs and constructed Lowdin’s NOs from the
interacting wave functions. Coulomb interactions rescale the
radius of the FD states compared to the noninteracting orbitals
of a QD. Correlations additionally require a few weakly
occupied excited NOs. Nevertheless, quantitatively we find
the same shell filling model for STQs with and without
interactions. The immunity to charge noise of four-electron
STQs, which was indicated from the noninteracting QD
orbitals, stays valid for interacting QD electrons of realistic
parameters. In addition, four-electron STQs at weak out-of-
plane magnetic fields will be protected from all noise sources
that weakly couple to the charge densities [50].

More generally we conclude that a CI calculation that
is restricted to only a few NOs sufficiently describes the
properties of few-electron QDs. Instead of deriving the NOs
from a full-CI calculation, many self-consistent methods
to derive NOs in CI calculations are known in quantum
chemistry [35,36]. An example is the iterative-NO method that
was proposed by Bender and Davidson [51]. Starting from a
guess for the NOs, a small set of Slater determinants is created
that is used for a CI calculation. The NOs can be extracted from
this calculation. Again a set of Slater determinants is created
from these NOs that is used for a CI calculation. Iterating
the extraction of NOs and small basis CI calculations ideally
converges very rapidly. Note that the guess for the NOs does
not need to resemble the noninteracting wave functions.

Especially for systems with a large influence of correlations,
a full-CI calculation requires a large set of basis states to obtain
an accurate description of the ground states. The iterative-
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NO method is one of many approaches to reduce the basis
size in numerical calculations [52,53]. While we focus only
on QDs occupied with maximally four electrons and typical
confining potentials, it has been shown that it is very difficult
to treat weaker confinements or slightly more electrons in
full-CI calculations [54]. A self-consistent NO construction
would help to obtain an accurate numerical description for
these QDs, and this method can also describe systems that are
too big for full-CI calculations.

Our finding is also relevant to analytical descriptions of few-
electron QDs. Earlier studies very often used a minimal-basis
Hubbard model to describe the properties of few-electron QDs
(cf., e.g., Refs. [39,55,56]). The chosen basis was motivated
by the analysis of the noninteracting eigenfunctions of a QD
potential, but it has been questionable to which degree this
few-band Hubbard model represents QD wave functions when
correlation effects are included. We saw that realistic QD wave
functions represent the noninteracting orbital level spectrum
of QDs to a high degree, and an expansion of the Hubbard
model using only a few additional orbital levels can describe all
correlation effects. Coulomb interactions also rescale the Bohr
radius of the FD states compared to the noninteracting case.
The perspective of highly accurate numerical calculations,
with a transparent analytical interpretation, should further
stimulate the study of NOs for QDs in the future.
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APPENDIX A: COMPUTATIONAL METHODS

We describe the numerical analysis of N-electron QDs
which is used in the main part of the paper. The N-electron
configuration of QDs is described by

N
H= htr)+ ) grir), (A1)
i=1 (i.j)
Ly 4+ eA)
hy= LY HA)  men oo )
2m 2
, 1
g(rr) = (A3)

 dmepe, r—r'|

h(r) is the single-particle Hamiltonian that consists of the
kinetic energy and the harmonic confining potential of a QD of
the magnitude hwy. e > 01is the electron’s charge, and m is the
effective mass. For the kinetic energy, we introduce the orbital
effects of the magnetic field with the magnetic vector potential
A. Because the out-of-plane confining potential is very strong,
only the out-of-plane magnetic field component is important,
and we introduce its orbital effects using the symmetric gauge
A= % (y,—x,0)". The single-particle Hamiltonian in Eq. (1)
can be obtained from Eq. (A2) after some trivial rewriting.
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The Coulomb interaction g(r,r’) in Eq. (A3) is introduced
between all the electron pairs (labeled by (i, j)). €y is the
dielectric constant, and ¢, is the relative permittivity.

For our calculations we use typical parameters of GaAs
QDs. We use the effective mass m = 0.067m,, where m, is
the electron mass, and €, = 12.7 is the relative permittivity.
Typical GaAs QDs have hwy = 3 meV. The Hamiltonian is
discretized using a grid of Gaussian basis functions [57],
and the full-CI calculation is done using a basis of 50
single-particle eigenstates of the Hamiltonian from Eq. (A2)
with the lowest energies. This number of basis states was
sufficient for the convergence of the full-CI calculations in
earlier calculations of two-electron STQs [58,59], and we can
achieve similar convergence with the four-electron STQs (an
energy cutoff similar to Ref. [50] was used here to restrict the
size of the CI basis).

APPENDIX B: METHOD OF REDUCED
DENSITY MATRICES

This section describes how reduced density matrices
describe correlated quantum systems [34]. We define an
N-electron Hamiltonian

N
H=) hr+) grir))
i=1 (i,j

— —
320 8riry)

= / dr Wi (mh)¥(r)

+% f dr / dr' U eV g, kYY) (r)

no,mo’ At At N
8o 16" Cho Cm Clo Cra

= Y Wb+

no,mo’ no,mo’

" m
ko ,lo

(BI)

with the single-particle Hamiltonian A(r) and the interaction
Hamiltonian g(r,r’). {i,j) singles out all the pairs of the N
particles, and Z; ; sums over all the particles except identical
ones. We introduce also the notations in second quantization.
WM (r) is the field annihilation (creation) operator of a particle
at position r. We introduced a basis {|no)} of orthogonal and
normalized wave functions. é,,? is the annihilation (creation)

operator of a particle in the state |no). A7, = (no|h|mo’)

and g7, = (no,mo’|glko" lo"") are the spectral represen-

tations of the Hamiltonians in the basis {|no)}.
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Lowdin introduced reduced density matrices to describe N-
electron wave functions [34]. We define the first-order density
matrix:

Q(r,r')zN/drz-... -dry

). (B2)

o(r,r)dr describes the probability that one particle is found in
the area dr around the point r. The first-order density matrix
can be conveniently rewritten in second quantization:

X I/f*(r7r2’ AR ,rN)’l/f(r/’rZ’ AR

o(r.r') = (W ) )ly)
= Z Oty By ()P (). (B3)

o, = (W@ia@mwh//) is the spectral decomposition of the
first-order density matrix in terms of the wave functions
¢n0(r) = (r|na).

Similarly, one defines the second-order density matrix:
a7 ,r,r')y = NN — 1)/dr3 -...-dry

J'N)K[/(r,r/,r:;, e ,I‘N),

(B4)

x YT, F,rs, ...

s (r,r',r,r')dr dr’ describes the probability that one particle
is found in the volume dr around r and one particle is found
in the volume dr’ around r’. Also the second-order density
matrix can be rewritten in second quantization:

W @A FEPE )Y ) y)
Y T by e (F ) ror (F)pror (),

n(r.r.rr’)

no,mo’
ko lo""
(B5)
. el no, n’lO'
with the spectral decomposition o om =

(W|ehot! e1gnéron| 1) of the density matrix.

It is very convenient to calculate expectation values using
the reduced density matrix notation. For example, the expec-
tation values of the single-particle Hamiltonian of Eq. (B1),

and the two-particle Hamiltonian,

<Z’g (i,j>>= 3w gene. (87

iJj

= ) o, (B6)

no, mao’

no,mo’
ko' 1"

are now easy to calculate.
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