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QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients

of these masses and using the Feynman-Hellmann theorem the hadron sigma terms can then be

determined. We use here a novel approach of keeping the singlet quark mass constant in our simulations

which upon using an SUð3Þ flavor symmetry breaking expansion gives highly constrained (i.e. few

parameter) fits for hadron masses in a multiplet. This is a highly advantageous procedure for determining

the hadron mass gradient as it avoids the use of delicate chiral perturbation theory. We illustrate the

procedure here by estimating the light and strange sigma terms for the baryon octet.

DOI: 10.1103/PhysRevD.85.034506 PACS numbers: 12.38.Gc

I. INTRODUCTION

Hadron sigma terms �ðHÞ
l , �ðHÞ

s are defined1 as that part

of the mass of the hadron (for example the nucleon)
coming from the vacuum connected expectation value of
the up (u) down (d) and strange (s) quark mass terms in the
QCD Hamiltonian,

�ðHÞ
l ¼ mR

l hHjð �uuþ �ddÞRjHi;
�ðHÞ

s ¼ mR
s hHjð �ssÞRjHi;

(1)

where we have taken the u and d quarks to be mass
degenerate, mu ¼ md � ml. (The superscript R denotes a
renormalized quantity.) Other contributions to the hadron
mass come from the chromo-electric and chromo-magnetic
gluon pieces and the kinetic energies of the quarks, [2].
Sigma terms are interesting because they are sensitive to
chiral symmetry breaking effects. Experimentally the

value for �ðNÞ
l has been deduced from low energy �-N

scattering. A delicate extrapolation to the chiral limit [1]
gives a result for the isospin even amplitude of ��N=f

2
�

(with ��N � �ðNÞ
l ), from which the sigma term may be

found. The precise value obtained this way has been under
discussion for many years. However within the limits of

our lattice calculation, this will not concern us here and
for orientation we shall just quote a range of results
from the earlier analyses of [3,4] of 45(8) MeV while a
later dispersion analysis [5] suggested a much higher
value 64(7) MeV. An estimation using heavy baryon
chiral perturbation theory gave 45 MeV, [6]. A more
recent estimate gave 59(17) MeV [7]. Even less is known
about the nucleon strange sigma term. Equation (1) is
usually written (in particular for the nucleon) as

�ðNÞ
l ¼ mR

l hNjð �uuþ �dd� 2�ssÞRjNi
1� yðNÞR ;

yðNÞR ¼ 2hNjð�ssÞRjNi
hNjð �uuþ �ddÞRjNi ;

(2)

(i.e. we consider �ðNÞ
l and yðNÞR rather than �ðNÞ

l and �ðNÞ
s ).

The simplest calculation, e.g. [1] (which we will discuss in
more detail later) uses first order in SUð3Þ flavor symmetry
(octet) breaking to give

�ðNÞ
l ¼ mR

l

mR
s �mR

l

M� þM� � 2MN

1� yðNÞR � 26

1� yðNÞR MeV;

(3)

and

�ðNÞ
s ¼ mR

s

mR
l

1

2
yðNÞR�ðNÞ

l � 325
yðNÞR

1� yðNÞR MeV; (4)

1Or more accurately as the matrix element of the double
commutator of the Hamiltonian with two axial charges.
However this is equivalent to the definition given in Eq. (1),
see for example [1].
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where mR
s =m

R
l is the ratio of the strange to light quark

masses, which using the leading order partially conserved
axial current (PCAC) formula for this ratio gives

mR
s =m

R
l ¼ ð2M2

K �M2
�Þ=M2

� � 25: (5)

The Zweig rule, hNjð�ssÞRjNi � 0 would then give

�ðNÞ
l � 26 MeV; �ðNÞ

s � 0 MeV; (6)

while any nonzero strangeness content, yðNÞR > 0 would

increase this value of �ðNÞ
l , �ðNÞ

s (and indeed, due to the

large coefficient, �ðNÞ
s quite rapidly).

Determination of the strange sigma term (and in par-

ticular yðNÞR) is important in constraining the cross section
for the detection of dark matter. Weakly interacting mas-
sive particles (WIMPs) would be scattered off nuclei by the
exchange of scalar particles, such as the standard model
Higgs particle, which will interact more strongly with
heavier quark flavors. This coupling can be parameterized
in terms of the fractional contribution of a quark flavor
q to the nucleon’s mass MN , fTq

¼ mR
q hNjð �qqÞRjNi=MN .

While the contributions of the charm and heavier flavors
approach a constant that is proportional to the gluonic
contribution fTg

, there is a strong dependence of the cross

section on the value of fTs
, see e.g. [8,9] and references

therein.
Computing the sigma terms from lattice QCD has a long

history from initial quenched simulations to 2 flavor and
more recently 2þ 1 flavor simulations, e.g. [10–21], with a
status report being given in [22]. In general more recent

results tend to give a lower �ðNÞ
s term than earlier

determinations.
In this article, we shall investigate this simple picture as

described in Eqs. (3) and (5) and, in particular, test the
linearity assumption of SUð3Þ flavor symmetry breaking.

II. FLAVOR SYMMETRY EXPANSIONS

Lattice simulations start at some point in the ðmR
s ;m

R
l Þ

plane and then approach the physical point ðmR�
s ; mR�

l Þ
along some path. (In the future we shall denote the physical
point with a �.) As we shall be considering flavor symmetry
breaking then we shall start here at a point on the flavor
symmetric line mR

l ¼ mR
s and then consider the path keep-

ing the average quark mass constant, �m ¼ const:. The
SUð3Þ flavor group (and quark permutation symmetry)
then restricts the quark mass polynomials that are allowed,
[23], giving for the baryon octet

MH ¼ M0ð �mÞ þ cH�ml þOð�m2
l Þ; (7)

with

cH ¼

8>>>><
>>>>:

3A1 H ¼ N

3A2 H ¼ �

�3A2 H ¼ �

�3ðA1 � A2Þ H ¼ �

(8)

where

�ml ¼ ml � �m; �m ¼ 1
3ð2ml þmsÞ (9)

and A1 and A2 are unknown coefficients. So to linear order
in the quark mass, we only have two unknowns (rather than
four). A similar situation also holds for the pseudoscalar
and vector octets (one unknown) and baryon decuplet (also
one unknown). These functions highly constrain the nu-
merical fits. At Oð�m2

l Þ only the baryon decuplet has a

further constraint.
Permutation invariant functions of the masses XS, (or

‘‘center of mass’’ of the multiplet) can be defined and
have no linear dependence on the quark mass. For
example for the baryon octet we have

XN ¼ 1
3ðMN þM� þM�Þ ¼ M0ð �mÞ þOð�m2

l Þ: (10)

(The corresponding result for the pseudoscalar octet is
given later in Eq. (29).)
Furthermore expanding about a specific fixed point,

ml ¼ ms ¼ m0 on the flavor symmetric line and allowing
�m to vary, we then have

M0ð �mÞ ¼ M0ðm0Þ þM0
0ðm0Þð �m�m0Þ þOðð �m�m0Þ2Þ:

(11)

We will see that A1, A2 give all the nonsinglet hyperon
sigma terms and M0ðm0Þ the singlet terms.
As an example of the quark mass expansion from a point

on the flavor symmetric line in Fig. 1 we plot the baryon
octetMH=XN forH ¼ N,�,�,� againstM2

�=X
2
� together

with a linear fit, Eq. (7) and implicitly Eq. (29) using 2þ 1
OðaÞ improved clover fermions at � ¼ 5:50, [24] using
two starting values for the quark mass on the flavor sym-
metric line, namely �0 ¼ 0:12090, 0.12092.
All the points have been arranged in the simulation to

have constant �m. We see that a linear fit provides a good
description of the numerical data from the symmetric point
(where M� � X�

� ¼ 410:9 MeV) down to the physical
pion mass.
In a little more detail, the bare quark masses are defined

as

amq ¼ 1

2

�
1

�q

� 1

�0;c

�
; with q ¼ l; s; 0 (12)

(with the index q ¼ 0 denoting the common quark along
the flavor symmetric line) and where vanishing of the
quark mass along the SUð3Þ flavor symmetric line deter-
mines �0;c. Keeping �m ¼ constant � m0 gives
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�s ¼ 1
3
�0
� 2

�l

: (13)

So once we decide on a �l this then determines �s. Note
that �0;c drops out of Eq. (13), so we do not need its explicit

value. These initial �0 values chosen here, namely �0 ¼
0:12090 and 0.12092 are close to the path that leads to the
physical point (�0 ¼ 0:12092 being slightly closer). (This
is discussed in more detail in [23], which also contains
numerical tables and phenomenological values for the
hadron masses. Results not included there are given
in Appendix C.) This path is also illustrated later in
Sec. IVC. Although finite size effects tend to cancel in
ratios of quantities from the same multiplet, we neverthe-
less fit just to the results from the 323 � 64 lattices (filled
circles) using the linear fit of Eq. (7). Finally note that we
also have a similar flavor expansion for the pseudoscalar
octet as for the baryon octet, as will be discussed in
Sec. IVC.

III. (HYPERON) SCALAR MATRIX ELEMENTS

Scalar matrix elements can be determined from the
gradient of the hadron mass (with respect to the quark
mass) by using the Feynman-Hellman theorem which is
true for both bare and renormalized quantities. So if we
take the derivative with respect to the bare quark mass we
get the bare �qq matrix element,

@MH

@ml

¼hHjð �uuþ �ddÞjHi; @MH

@ms

¼hHj�ssjHi; (14)

while if we take the derivative with respect to the renor-
malized quark mass we get the renormalized matrix ele-
ment. In the left panel of Fig. 2, we show the nucleon
(diamonds) and the flavor symmetric nucleon (squares)
against 1=�l, 1=�0 respectively [from Eq. (12) these are
proportional to the bare quark mass]. From the Feynman-
Hellmann theorem, the slope of the masses (squares) curve
gives the total

P
q¼u;d;shNj �qqjNi, while the slope of the

curve gives the valence contribution.2 The difference be-
tween the two contributions gives the disconnected con-
tribution. Because here all three quark masses are equal,
the disconnected contribution for all three quarks will be
the same. The two slopes thus give the estimates

P
q
hNj �qqjNicon
P
q
hNj �qqjNi � 4:0

9:7
� 0:41; (15a)

hNj�ssjNiP
q
hNj �qqjNi �

1

3

�
9:7� 4:0

9:7

�
� 0:19; (15b)

for bare lattice quantities.
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FIG. 1 (color online). MH=XN (H ¼ N, �, �,�) againstM2
�=X

2
� for initial point (‘‘sym. pt.’’) on the flavor symmetric line given by

�0 ¼ 0:12090 (left panel) and �0 ¼ 0:12092 (right panel). The 323 � 64 lattices are filled circles, while the 243 � 48 lattices are open
triangles. Also shown is the combined fit of Eq. (33) (dashed lines) to the 323 � 64 lattice data. The fit results are the open circles,
while the experimental points are the stars. l and s denote the light and strange quark content of the hadron.

2Equation (7) can be extended to the ‘‘partially quenched’’
case [23], where the sea quark masses remain constrained by
�m ¼ const: but the valence quark masses �l, �s are uncon-
strained. Defining ��q ¼ �q � �m then for the nucleon, the
leading change is particularly simple, cN�ml ! cN��l. For
the other members of the octet, �, �, �, both ��l, ��s
occur [23].
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To look at renormalized matrix elements, we need a plot
against the renormalized mass, ðaM�Þ2 [as in leading order
PCAC,M2

� is proportional to the renormalized quark mass,
Eq. (31)]. This is shown in the right panel of Fig. 2. The
slopes are now much closer to each other. We now find the
estimates

P
q
hNjð �qqÞRjNicon
P
q
hNjð �qqÞRjNi � 3:2

4:3
� 0:74; (16a)

hNjð�ssÞRjNiP
q
hNjð �qqÞRjNi �

1

3

�
4:3� 3:2

4:3

�
� 0:085; (16b)

for renormalized lattice quantities, giving yðNÞR � 2�
0:085=ð1� 0:085Þ � 0:19. So although for bare matrix
elements there is a significant strange quark content this
is reduced in the renormalized matrix element.

We shall now try to make these considerations a little
more quantitive.

IV. (HYPERON) � EQUATIONS

A. Renormalization

For Wilson (clover) fermions under renormalization the
singlet and nonsinglet pieces of the quark mass renormal-
ize differently [25,26]. We have

mR
q ¼ ZNS

�
mq þ �Z

1

3
ð2ml þmsÞ

�
;

�Z ¼ ZS � ZNS

ZNS
:

(17)

In the action the term
P

qmq �qq ¼ P
qm

R
q ð �qqÞR i.e. a renor-

malization group invariant or RGI quantity. Upon writing
this in a matrix form and inverting gives

ð �qqÞR ¼ 1

ZNS

�
�qq� �Z

1þ �Z

1

3
ð �uuþ �ddþ �ssÞ

�
; (18)

so for �Z � 0 then there is always mixing between bare
operators.
As an example of where this manifests itself, the

relation between the bare, yðHÞ, and renormalized yðHÞR,
cf. Equation (2), is then given by

yðHÞR ¼ yðHÞ � 2
3�Zð1� yðHÞÞ

1þ 1
3�Zð1� yðHÞÞ ; (19)

so we see that yðHÞR � yðHÞ for clover fermions.

Additionally, since �Z > 0 and yðHÞ * 0 we find that

yðHÞR < yðHÞ, i.e. reduced.
Useful quark combinations are the octet and singlet

combinations, namely

ð �uuþ �ddÞR � 2ð�ssÞR ¼ 1

ZNS
½ð �uuþ �ddÞ � 2ð �ssÞ�;

ð �uuþ �ddÞR þ ð�ssÞR ¼ 1

ZNSð1þ �ZÞ
½ð �uuþ �ddÞ þ ð�ssÞ�:

(20)

Furthermore, by using the Feynman-Hellman theorem
[Eq. (14)] with the hadron flavor expansion [Eq. (7) to-
gether with Eq. (11)] gives
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FIG. 2 (color online). The left panel shows the nucleon mass, aMN , versus 1=�l (for the �m ¼ const: points, diamonds with �0 ¼
0:12090) and versus 1=�0 (for the flavor symmetric points, ‘‘sym. pts.,’’ squares). The common flavor symmetric points are denoted by
circles. The 243 � 48 volume results are open circles together with a dashed line for the (linear) fit, while the 323 � 64 volume results
are filled circles and lines. Similarly the right panel shows the nucleon mass aMN , versus ðaM�Þ2 (same notation as for the left panel).
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hHjð �uuþ �ddÞR � 2ð�ssÞRjHi ¼ 1

ZNS
cH; (21)

hHjð �uuþ �ddÞR þ ð �ssÞRjHi ¼ 1

ZNS

M0
0

1þ �Z

: (22)

Equation (21), the equation for the matrix element
of an octet operator, only involves cH (the hadron mass
expansion keeping the singlet quark mass constant), while
Eq. (22), the matrix element of a singlet operator, only
involves M0

0 (occuring when changing the singlet quark

mass). Equation (21) also leads to Eq. (3) as discussed in
the introduction.3

Finally note that the quantities

ðms �mlÞhHjð �uuþ �ddÞ � 2�ssjHi;
ð2ml þmsÞhHjð �uuþ �ddÞ þ �ssjHi; (23)

are RGI and all Z factors cancel when they are renormal-
ized. Linear combinations of these two quantities are also
RGI, in particular, the combination used previously of

�ðHÞ
l þ �ðHÞ

s ¼ P
qmqhHj �qqjHi. However, �ðHÞ

l and �ðHÞ
s

considered separately are not RGI; see Eqs. (17) and (18).
The renormalized quantities are mixtures of the two lattice
quantities, and �Z is needed to relate lattice values to
continuum values. Refering back to Fig. 2 we see that the
bare lattice strange sigma term is much larger that the
renormalized strange sigma term, due to a cancellation
between the two terms in Eq. (18).

B. � equations

Multiplying the renormalized quark mass, Eq. (17),
together with Eqs. (21) and (22) [or more generally with
Eq. (18)] we can find RGI combinations (i.e. a form where
the renormalization constant ZNS cancels). In particular we
find

�ðHÞ
l � 2r�ðHÞ

s ¼ 3r

1þ 2r
ð1þ �ZÞm0cH; (24)

�ðHÞ
l þ r�ðHÞ

s ¼ 3r

1þ 2r
m0M

0
0ðm0Þ; (25)

where r is the ratio of quark masses

r � mR
l

mR
s

: (26)

Thus we have to find the (fixed) coefficients ð1þ
�ZÞm0cH, m0M

0
0ðm0Þ. We then determine the physical

values of the sigma terms by extrapolating to the point

where the quark mass ratio takes its physical value, i.e.
r ¼ r�.
We observe that we have two simultaneous equations,

which can be easily solved to give4

�ðHÞ
l ¼ r

1þ 2r
½ð1þ �ZÞm0cH þ 2m0M

0
0ðm0Þ�;

�ðHÞ
s ¼ 1

1þ 2r
½�ð1þ �ZÞm0cH þm0M

0
0ðm0Þ�:

(27)

We see that the smallness of �ðHÞ
l in comparison to �ðHÞ

s is

certainly guaranteed by the presence of an additional r in

its numerator. As �ðHÞ
s > 0 we must also have M0

0ðm0Þ>
ð1þ �ZÞmaxcH. These coefficients are also sufficient to

determine yðHÞR, as can be seen either directly from
Eq. (27) or from Eq. (22),

yðHÞR ¼ 2
�ð1þ �ZÞm0cH þm0M

0
0ðm0Þ

ð1þ �ZÞm0cH þ 2m0M
0
0ðm0Þ : (28)

Again, as seen in Sec. III, yðHÞR only depends on gra-
dients and not on the physical point.
It is now convenient to normalize the coefficients

by XN so we now need to find the coefficients
ð1þ �ZÞm0cH=XNðm0Þ and m0M

0
0ðm0Þ=XNðm0Þ.

C. Determination of the coefficients

The hint for determining the coefficients from our lattice
data is given in Sec. III, where we consider gradients with
respect to a renormalized or physical quantity—here taken
as the pion mass. As in Eq. (7) we also have a similar
expansion for the pseudoscalar octet,

M2
� ¼ M2

0� þ 2��ml þOð�m2
l Þ (29)

(together with M2
K ¼ M2

0� � ��ml þOð�m2
l Þ, M2

�s
¼

M2
0� � 4��ml þOð�m2

l Þ). This gives a good representa-

tion of the data as can be seen from Fig. 12 of [23].
Analogously to Eq. (10) we can define a flavor singlet
quantity

X2
� ¼ 1

3ð2M2
K þM2

�Þ ¼ M2
0� þOð�m2

l Þ: (30)

However, as well as Eq. (7), we have the additional con-
straint from PCAC

M2
� ¼ 2BR

0m
R
l (31)

(together with M2
K ¼ BR

0 ðmR
l þmR

s Þ, M2
�s

¼ 2BR
0m

R
s )

which implies that

M2
0� ¼ 2�ð1þ �ZÞ �m; � ¼ BR

0Z
NS: (32)

If we now consider an expansion in the (physical) pion
mass then eliminating �ml between Eq. (7) and (29) gives

3The RHS of Eq. (21) can be rewritten as cN=Z
NS ¼ 3A1=Z

NS.
Together with M� þM� � 2MN ¼ �9A1�ml ¼ 3A1ðmR

s �
mR

l Þ=ZNS this gives Eq. (3). An alternative mass combination
that also picks out the A1 coefficient is M� �M� ¼ �3A1�ml.

4This leads to relations between the various sigma terms,
which we list in Appendix A and where we also argue that
they are always approximately true.
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MH

XN

¼
�
1�

�
ð1þ �ZÞm0

cH
XN

��

þ
�
ð1þ �ZÞm0

cH
XN

�
M2

�

X2
�

; (33)

from the point on the symmetric line m0 ¼ �m. Thus if we
plot MH=XN versus M2

�=X
2
� (holding the singlet quark

mass, �m constant) then the gradient immediately yields
ð1þ �ZÞm0cH=XN . The only assumption is that the ‘‘fan’’
plot splittings remain linear in �ml down to the physical
point. In Fig. 1 we show this plot giving the results

ð1þ �ZÞm0

3A1

XN

¼ 0:1899ð55Þ; 0:2066ð68Þ;

ð1þ �ZÞm0

3A2

XN

¼ 0:03942ð314Þ; 0:04164ð431Þ;
(34)

for �0 ¼ 0:12090, 0.12092, respectively.
Alternatively on the flavor symmetric line, ml ¼ �m

(i.e. �ml ¼ 0), so varying �m from a point m0 gives

M2
�ð �mÞ ¼ M2

0�ð �mÞ ¼ M2
0�ðm0Þ þM20

0�ðm0Þð �m�m0Þ
¼ 2�ð1þ �ZÞ½m0 þ ð �m�m0Þ�; (35)

which gives M20
0�ðm0Þ ¼ 2�ð1þ �ZÞ. So now eliminat-

ing ð �m�m0Þ between Eqs. (11) and (35) gives

XNð �mÞ
XNðm0Þ

¼
�
1�

�
m0M

0
0ðm0Þ

XNðm0Þ
��

þ
�
m0M

0
0ðm0Þ

XNðm0Þ
�
X2
�ð �mÞ

X2
�ðm0Þ

:

(36)

Again in a plot of XNð �mÞ=XNðm0Þ versus X2
�ð �mÞ=X2

�ðm0Þ
the gradient immediately gives the required ratio
m0M

0
0ðm0Þ=XNðm0Þ. We have also replaced MN by XN

and M2
� by X2

� (which allows us to use all the 323 � 64
data available for a particular �m). In Fig. 3 we plot
XNð �mÞ=XNðm0Þ versus X2

�ð �mÞ=X2
�ðm0Þ. From Eq. (36)

this gives

m0M
0
0ðm0Þ

XNðm0Þ
¼ 0:273ð32Þ: (37)

Finally the quark mass ratio, r, must be estimated.
In Fig. 4 we plot ð2M2

K �M2
�Þ=X2

N versus M2
�=X

2
N . From

Eq. (29) we have

2M2
K �M2

�

X2
N

¼ 3
M2

0�

X2
N

� 2
M2

�

X2
N

: (38)

As in Sec. II, we see that for constant �m the data points lie
on a straight line (i.e. there is an absence of significant
nonlinearity). Furthermore the gradient is fixed at �2.
(Indeed leaving the gradient as a fit parameter for the �0 ¼
0:12090 confirms that this gradient is very close to �2.)
Together with PCAC, Eq. (31) gives the x-axis as propor-
tional tomR

l while the y-axis is proportional tom
R
s and thus

the ratio gives r. Taking our physical scale to be defined
from M2

�=X
2
Nj� (i.e. from the x-axes of Fig. 4) gives

1

r�
¼ mR

s

mR
l

��������
�¼

�
27:28ð16Þ �0 ¼ 0:12090

26:23ð24Þ �0 ¼ 0:12092
: (39)

D. Curvature effects

What can we say about corrections to the linear terms?
The simple linear fit describes the data well, from the
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m
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0)

FIG. 3 (color online). XNð �mÞ=XNðm0Þ versus X2
�ð �mÞ=X2

�ðm0Þ
along the flavor symmetric line, together with the linear fit from
Eq. (36).
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FIG. 4 (color online). ð2M2
K �M2

�Þ=X2
N versus M2

�=X
2
N for

�0 ¼ 0:12090 (left panel) and �0 ¼ 0:12092 (right panel). The
323 � 64 volume results are given by the filled symbols, while
the 243 � 48 volume results are shown using empty triangles.
The fit is given in Eq. (38). Experimental points are denoted by
stars.
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symmetric point to our lightest pion mass, both along the
�m ¼ const: line and the flavor symmetric line. To see
the qualitatively of the possible influence of curvature we
now compare linear fits with quadratic fits. These will be
used to estimate possible systematic effects. We briefly
discuss these effects here.

In Fig. 5 we compare the results of a quadratic fit and a
linear fit, both for the baryon mass fan plot and for
XNð �mÞ=XNðm0Þ. In the left panel of the figure, we consider
the baryon mass fan plot. The quadratic fit here uses all the
data, [23], on both lattice sizes (in cases where results for
two lattice sizes are available, we used the larger lattice
size only). The curvature terms here are small and statis-
tically compatible with zero.

The right panel of the figure shows a quadratic fit to
the results along the symmetric line. The curvature here
is dominated by the large error of the lightest point
(which has a low statistic). Thus we shall regard this fit
as only giving an estimation of the possible systematic
error.

The results in the next section include systematic error
estimates from both these curvature sources combined in
quadrature. In Appendix B we give some more details.

V. RESULTS

We can now numerically determine yðHÞR and�ðHÞ
l ,�ðHÞ

s .

We start with yðHÞR. From Eq. (28), together with
Eqs. (34), (37), and (8) gives the results in Table I. The
first error is the linear fit error [in this case dominated by
the error in Eq. (37)], while the second error indicates
possible effects from higher order terms, as discussed in
Sec. IVD. We see that there is an order of magnitude
increase in the fraction of hHjð�ssÞRjHi compared to
hHjð �uuþ �ddÞRjHi as we increase the strangeness content
of the baryon from the nucleon (no valence strange quarks)
to the � (two valence strange quarks).
Turning to the sigma terms themselves, from Eq. (24) we

can find an indication of the magnitude of �ðNÞ
l as approxi-

mately (with XN ¼ 1:1501 GeV),
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FIG. 5 (color online). Left panel: MH=XN for H ¼ N, �, �, � against a�ml for initial point on the flavor symmetric line given by
�0 ¼ 0:12090 together with the previous linear fit (dashed lines) and quadratic fit (solid lines). Other notation as in Fig. 1. Right panel:
XNð �mÞ=XNðm0Þ versus X2

�ð �mÞ=X2
�ðm0Þ along the flavor symmetric line, together with a linear fit from Eq. (36) (dashed line) and a

quadratic fit (solid line).

TABLE I. Results for the baryon octet for yðHÞR�, �ðHÞ�
l , �ðHÞ�

s with H ¼ N, �, �, � for �0 ¼
0:12090, 0.12092.

N � � �

�0 ¼ 0:12090
yðHÞR� 0.22(9)(15) 0.80(14)(28) 1.23(20)(41) 2.14(38)(64)

�ðHÞ�
l ½MeV� 29(3)(4) 23(3)(4) 20(3)(4) 16(3)(5)

�ðHÞ�
s ½MeV� 89(34)(59) 250(34)(68) 334(34)(68) 453(34)(58)

�0 ¼ 0:12092
yðHÞR� 0.18(9)(15) 0.79(14)(28) 1.25(20)(42) 2.30(42)(68)

�ðHÞ�
l ½MeV� 31(3)(4) 24(3)(4) 21(3)(4) 16(3)(4)

�ðHÞ�
s ½MeV� 71(34)(59) 247(34)(69) 336(34)(69) 468(35)(59)
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�ðNÞ�
l � ½22� 25� þ �ðNÞ�

s

13
MeV> ½22� 25� MeV

(40)

(for �0 ¼ 0:12090, 0.12092, respectively). The last in-

equality follows obviously as �ðNÞ�
s > 0. Indeed this shows

that a nonzero �ðNÞ�
s > 0 can only add a few more MeV to

this result.

The results for �ðHÞ�
l and �ðHÞ�

s are also given in Table I.

(Again the first error is the statistical error, while the

second systematic error is due to possible quadratic ef-
fects.) While the data for �0 ¼ 0:12090 are more complete
than for �0 ¼ 0:12092 (cf. the plots in Fig. 1) and demon-
strates linear behavior, as the path starting at �0 ¼ 0:12092
is closer to the physical point (cf. Fig. 4), we shall use these
values as our final values. These results are illustrated in

Fig. 6 with yðHÞR� for H ¼ N, �, �, �.

By varying r in Eq. (27),5 we plot in Fig. 7 �ðHÞ
l and�ðHÞ

s

for the baryon octet, H ¼ N, �, � and � from the sym-
metric point (vertical dashed line at x ¼ 1) to the physical

point (left vertical dashed line). �ðHÞ
l is rapidly decreasing

while �ðHÞ
s is increasing as we decrease the quark mass.

Also, as expected �ðHÞ
l is largest for the nucleon, N, while

�ðNÞ
s is the smallest. Finally in Fig. 8 we plot �ðHÞ�

l , �ðHÞ�
s

against H ¼ N, �, � and �, again using Table I.

VI. CONCLUSIONS

Keeping the average quark mass constant gives very
linear ‘‘fan’’ plots from the flavor symmetric point down
to the physical point. This implies that an expansion in the
quark mass from the flavor symmetric point will give
information about the physical point. In this article we
have applied this to estimating the sigma terms (both light
and strange) of the nucleon octet. There has been no use of
a chiral perturbation expansion (indeed this is an opposite
expansion to the one used here, expanding about zero
quark mass).
Our results are given in Sec. Vand we quote from there a
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5Using, for example, the results from the left panel of Fig. 4, r
may be rewritten as
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�=X
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�ðNÞ�
l ¼ 31ð3Þð4Þ MeV; �ðNÞ�

s ¼ 71ð34Þð59Þ MeV:

(41)

(The first error is the fit error while the second error
indicates possible effects from higher order terms in the
flavor expansion.) Note that expansions about the SUð3Þ
flavor line require consistency between many QCD observ-
ables, here, for example, not only for the baryon octet
under consideration, but also for the pseudoscalar octet,
PCAC and the ratio of the light to strange quark mass.

Of course there are several more avenues to investigate.
Numerically an increase in statistics for the masses along
the flavor symmetric line would reduce the dominant error
(both statistical and systematic) and so directly help in
decreasing the present errors. Our approach here has
been to emphasize linearity at the expense (presently) of
reaching exactly the physical point. This can be addressed
by interpolating between a small set of constant �m lines
about the physical point. Additionally the use of partial
quenching will also help to get closer to the physical pion
mass. With more data, a systematic investigation of qua-
dratic quark mass terms in the flavor expansion should be
considered, to reduce the systematic errors. Finally while
the use of linear or quadratic terms along the line of
constant �m is unproblematic, so that it is unlikely that
Eq. (40) will change by much, more subtle is the relation
involving Xð �mÞ (i.e. the gradient when changing �m.) For
the example of clover fermions we have ~g2ð �mÞ ¼
ð1þ bga �mÞg2 which clearly does not change if �m ¼
constant, but will slightly change when �m does. However
this is probably not a large effect (as bg seems small). For a

discussion of some aspects of this issue see [27,28].
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APPENDIX A: SOME RELATIONS
BETWEEN THE � TERMS

We discuss here some relations between the sigma terms
within a multiplet (here taken to be the baryon octet) which
are exact within the linear case discussed, but which we
might expect to always be approximately true.

The singlet relation Eq. (22) or Eq. (25) is the same for
every hadron. So in terms of sigma terms this becomes

�ðHÞ
l þ r�ðHÞ

s � �ðH0Þ
l þ r�ðH0Þ

s : (A1)

At the flavor symmetric point it follows from group theory
that a singlet operator has the same value for every member
of a multiplet, so Eq. (A1) must hold. But this can change if
we move away from the symmetric point. (We shall briefly
discuss this at the end of this section.)
We can find another collection of near identities by

summing over a singlet combination of hadrons—this
can be either a singlet of S3 or a singlet of SUð3Þ. If we
do this, the expectation values of �uu, �dd and �ss will be
exactly equal at the flavor symmetry point, and stay again
nearly equal away from the symmetry point. By this argu-
ment we expect

�ð�Þ
l þ �ð�Þ

l � 2rð�ð�Þ
s þ �ð�Þ

s Þ;
�ðNÞ

l þ �ð�Þ
l þ �ð�Þ

l � 2rð�ðNÞ
s þ �ð�Þ

s þ �ð�Þ
s Þ: (A2)

(Again this relation, as with the other relations discussed
here, is exactly true for the linear case.)
Other relations come from the Gell-Mann Okubo rela-

tion, [29,30], in which the 27-plet mass combination is
very small,

2MN � 3M� �M� þ 2M� � 0; (A3)

for all values of ml, ms. In our approach, its derivatives are
also near zero. We therefore expect

2�ðNÞ
l � 3�ð�Þ

l � �ð�Þ
l þ 2�ð�Þ

l � 0;

2�ðNÞ
s � 3�ð�Þ

s � �ð�Þ
s þ 2�ð�Þ

s � 0:
(A4)

We obtain an even stronger version of these relations
by taking the singlet combination, proportional to
ð �uuþ �ddÞR þ ð �ssÞR,

2�ðNÞ
l � 3�ð�Þ

l � �ð�Þ
l þ 2�ð�Þ

l

þ rð2�ðNÞ
s � 3�ð�Þ

s � �ð�Þ
s þ 2�ð�Þ

s Þ � 0: (A5)

There is also a relation between the sigma terms and the
hadron masses, [2], in the constants A1 and A2 which occur
in the mass splittings also occur in the leading order
expressions for the sigma terms. So there will be connec-
tions between masses and sigma terms. One particularly
simple relation is

MH � �ðHÞ
l � �ðHÞ

s � MH0 � �ðH0Þ
l � �ðH0Þ

s : (A6)

(i.e. the baryon mass difference is closely accounted for by
the sigma terms). For the linear case this is again exact,
with this equation being equal toM0ðm0Þ �m0M

0
0ðm0Þ for

all the octet baryons [upon using Eqs. (7) and (27)]. From
Eq. (11) we see that this is just the common hadron mass
in the chiral limit along the flavor symmetric line, when
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ml ¼ 0 ¼ ms or �m ¼ 0. �ðHÞ
l and �ðHÞ

s can be thought of as

that part of the hadron mass which is due to ml and ms,
respectively. The remnant, M0ðm0Þ �m0M

0
0ðm0Þ, is the

part of the hadron mass due to the quark and gluon kinetic
energy, interaction energy, etc., [2], i.e. the part of the
hadron mass which is not due to the coupling with the
Higgs vacuum expectation value.

We can use the higher order mass equations in [23] to
estimate how well the relations in this section hold. Most of
the relations have violations proportional to the first power
of the SUð3Þ breaking parameter, �ml. The corrections to
Eqs. (A1) and (A2) and the first relation in Eq. (A4) are
Oðml�mlÞ. The �s relation in Eq. (A4) has corrections
Oðms�mlÞ. When we combine these two relations to
form Eq. (A5), the leading violation terms cancel, and
we have a relation with corrections Oðml�m

2
l Þ. The cor-

rections to the mass relation Eq. (A6) are Oð �m�mlÞ and
Oð�m2

l Þ.

APPENDIX B: HIGHER ORDER EFFECTS

In this appendix, we discuss a little more quantitatively
the systematic errors induced by the inclusion of the qua-
dratic terms in the fit formulas. We concentrate particularly

on the nucleon sigma terms, �ðNÞ
l and �ðNÞ

s .

1. Curvature in the ‘‘fan’’ plot

In Fig. 5 we compare the results of a quadratic fit and a

linear fit, both for the baryon mass fan plot and on �ðNÞ
l and

�ðNÞ
s . The quadratic fit uses all the data, [23], on both lattice

sizes (in cases where results for two lattice sizes are
available, we used the larger lattice size only). Including
curvature terms in Eq. (7), [23], we have MH ¼
M0 þ cH�ml þ bH�m

2
l þ . . . . Tracing through the analy-

sis, we find the effect on Eq. (27) is to replace

cH ! cH þ 2bH�ml: (B1)

By comparing cH from the linear fit with cH þ 2bH�m
�
l

from the quadratic fit, we can estimate the maximum
possible change.

We use the data at �0 ¼ 0:12090, because this is the case
where we have the most data covering the largest range in
quark mass splitting, �ml. In this case we have data cover-
ing about 3=4 of the gap from the symmetric point to the
physical point, so we have the most chance of seeing
curvature effects if they are present.

For the fan plot (left panel of Fig. 5), the curvature terms
are found to be small, and statistically compatible with
zero curvature. In Fig. 9 we compare the nucleon sigma
terms from the slopes of the two fits by using Eq. (27)
together with Eq. (B1). Again we see that the curvature

effect is very small in the case of �ðNÞ
l , particularly at small

ml, and much larger for �ðNÞ
s . Can we explain this

difference?

The slopes in the fan plot only effect the nonsinglet
matrix element, the cH term in Eq. (27). The curvature
changes the slope of the nucleon line by about 10% at the

physical point. The nonsinglet term in �ðNÞ
l is responsible

for about 25% of the quantity, so a 10% change in slope

translates to a 2.5% change in �ðNÞ
l . Putting in the actual

slope change, the final number we arrive at is a systematic

uncertainty of about 1 MeV in �ðNÞ
l coming from curvature

in the fan plot.

The situation for �ðNÞ
s is different, the singlet and non-

singlet terms appear with opposite signs, so �ðNÞ
s is given

by the difference between two large quantities. Thus a 10%
change in the nonsinglet matrix element is leveraged into a

25% change in �ðNÞ
s . Repeating this procedure for the other

hadrons gives similar nonsinglet uncertainties.

FIG. 9 (color online). �ðNÞ
l and �ðNÞ

s against M2
�=X

2
� using

linear fits (dashed lines) and quadratic fits (solid lines) for
�0 ¼ 0:12090.

TABLE III. Additional results for the pseudoscalar octet me-
sons: aM�, aMK and aM�s

for ð�; csw; �Þ ¼ ð5:50; 2:65; 0:1Þ
where �0 ¼ 0:12092.

ð�l; �sÞ aM� aMK aM�s

243 � 48
(0.120870, 0.121020) 0.1804(8) 0.1621(10) 0.1407(12)

(0.120980, 0.120800) 0.1545(9) 0.1775(8) 0.1976(7)

TABLE II. Additional result for the pseudoscalar octet mesons
and octet baryons along the flavor symmetric line: aM�, aMN ,
for ð�; csw; �Þ ¼ ð5:50; 2:65; 0:1Þ.
�0 aM� aMN

323 � 64
0.120920 0.1647(4) 0.4443(59)
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2. Curvature along the symmetric line

We also use a linear fit to describe the baryon masses
along the symmetric line (the line with all three quark
masses equal). What is the effect of using a quadratic fit
to determine the slope along this line?

In the right panel of Fig. 5 we compare a quadratic and
linear fit to the symmetric baryon masses. As before, the
quadratic term is compatible with zero curvature. Indeed
the quadratic term is probably too large and is likely due to
having a short lever arm and low statistics at the lightest
point rather than to be a real effect. (Also we would expect
that chiral perturbation theory would predict a downward
curve.)

Feeding these values into Eq. (27) gives an estimate of
the possible effect of quadratic terms, due to curvature
along the symmetric line, which we will include in our
final error estimate. This curvature effect is the same for

every hadron, giving an uncertainty �4 MeV for �l and
�55 MeV for �s. However because the shift is universal,
this does not effect splittings, so the systematic error in

�ðHÞ
l � �ðH0Þ

l is still given by the �1 MeV value of the

previous subsection. For yðHÞR, using the first equation in

Eq. (4) gives percentage changes in yðNÞR of 60% and 30%

for yð�ÞR, yð�ÞR and yð�ÞR.

APPENDIX C: HADRON MASSES

We collect here in Tables II, III, IV, and V numerical
values for the meson pseudoscalar octet and baryon octet,
not given in [23]. (All the data sets used here are over
�2000 configurations for the 243 � 48 volumes and
�1500–2000 configurations for the 323 � 64 volumes ex-
cept for �0 ¼ 0:12099 which has �500 configurations.)
Errors are from a bootstrap analysis.
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