000190082 001__ 190082
000190082 005__ 20240610121217.0
000190082 0247_ $$2doi$$a10.1016/j.mvr.2015.02.006
000190082 0247_ $$2WOS$$aWOS:000354420200007
000190082 037__ $$aFZJ-2015-03041
000190082 082__ $$a610
000190082 1001_ $$0P:(DE-Juel1)156298$$aKatanov, Dinar$$b0$$eCorresponding Author
000190082 245__ $$aMicrovascular blood flow resistance: Role of red blood cell migration and dispersion
000190082 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000190082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430736935_23230
000190082 3367_ $$2DataCite$$aOutput Types/Journal article
000190082 3367_ $$00$$2EndNote$$aJournal Article
000190082 3367_ $$2BibTeX$$aARTICLE
000190082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190082 3367_ $$2DRIVER$$aarticle
000190082 520__ $$aMicrovascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm < D < 100 μm. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell–cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells.
000190082 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000190082 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1
000190082 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b2$$eCorresponding Author
000190082 773__ $$0PERI:(DE-600)1471172-2$$a10.1016/j.mvr.2015.02.006$$p57-66$$tMicrovascular research$$v99$$x0026-2862$$y2015
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.pdf$$yRestricted
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.gif?subformat=icon$$xicon$$yRestricted
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000190082 8564_ $$uhttps://juser.fz-juelich.de/record/190082/files/1-s2.0-S0026286215000175-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000190082 909CO $$ooai:juser.fz-juelich.de:190082$$pVDB
000190082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156298$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000190082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000190082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000190082 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000190082 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000190082 9141_ $$y2015
000190082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190082 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190082 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190082 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000190082 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000190082 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000190082 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000190082 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000190082 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000190082 980__ $$ajournal
000190082 980__ $$aVDB
000190082 980__ $$aI:(DE-Juel1)IAS-2-20090406
000190082 980__ $$aI:(DE-Juel1)ICS-2-20110106
000190082 980__ $$aUNRESTRICTED
000190082 981__ $$aI:(DE-Juel1)IBI-5-20200312
000190082 981__ $$aI:(DE-Juel1)IAS-2-20090406
000190082 981__ $$aI:(DE-Juel1)ICS-2-20110106