000190151 001__ 190151
000190151 005__ 20210129215527.0
000190151 0247_ $$2doi$$a10.1103/PhysRevLett.114.166801
000190151 0247_ $$2ISSN$$a0031-9007
000190151 0247_ $$2ISSN$$a1079-7114
000190151 0247_ $$2Handle$$a2128/8641
000190151 0247_ $$2WOS$$aWOS:000353289300011
000190151 0247_ $$2altmetric$$aaltmetric:3934210
000190151 037__ $$aFZJ-2015-03082
000190151 082__ $$a550
000190151 1001_ $$0P:(DE-HGF)0$$aSchirone, S.$$b0
000190151 245__ $$aSpin-Flip and Element-Sensitive Electron Scattering in the BiAg $_{2}$ Surface Alloy
000190151 260__ $$aCollege Park, Md.$$bAPS$$c2015
000190151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1432725760_30669
000190151 3367_ $$2DataCite$$aOutput Types/Journal article
000190151 3367_ $$00$$2EndNote$$aJournal Article
000190151 3367_ $$2BibTeX$$aARTICLE
000190151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190151 3367_ $$2DRIVER$$aarticle
000190151 520__ $$aHeavy metal surface alloys represent model systems to study the correlation between electron scattering, spin-orbit interaction, and atomic structure. Here, we investigate the electron scattering from the atomic steps of monolayer BiAg2 on Ag(111) using quasiparticle interference measurements and density functional theory. We find that intraband transitions between states of opposite spin projection can occur via a spin-flip backward scattering mechanism driven by the spin-orbit interaction. The spin-flip scattering amplitude depends on the chemical composition of the steps, leading to total confinement for pure Bi step edges, and considerable leakage for mixed Bi-Ag step edges. Additionally, the different localization of the occupied and unoccupied surface bands at Ag and Bi sites leads to a spatial shift of the scattering potential barrier at pure Bi step edges.
000190151 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000190151 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000190151 7001_ $$0P:(DE-HGF)0$$aKrasovskii, E. E.$$b1
000190151 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b2
000190151 7001_ $$0P:(DE-HGF)0$$aPiquerel, R.$$b3
000190151 7001_ $$0P:(DE-HGF)0$$aGambardella, P.$$b4
000190151 7001_ $$0P:(DE-HGF)0$$aMugarza, A.$$b5$$eCorresponding Author
000190151 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.114.166801$$gVol. 114, no. 16, p. 166801$$n16$$p166801$$tPhysical review letters$$v114$$x1079-7114$$y2015
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.pdf$$yOpenAccess
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.gif?subformat=icon$$xicon$$yOpenAccess
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000190151 8564_ $$uhttps://juser.fz-juelich.de/record/190151/files/PhysRevLett.114.166801.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000190151 909CO $$ooai:juser.fz-juelich.de:190151$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000190151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000190151 9130_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSpin-based and quantum information$$x0
000190151 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000190151 9141_ $$y2015
000190151 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000190151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190151 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190151 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190151 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000190151 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000190151 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000190151 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000190151 920__ $$lyes
000190151 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000190151 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000190151 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000190151 9801_ $$aFullTexts
000190151 980__ $$ajournal
000190151 980__ $$aVDB
000190151 980__ $$aFullTexts
000190151 980__ $$aUNRESTRICTED
000190151 980__ $$aI:(DE-Juel1)IAS-1-20090406
000190151 980__ $$aI:(DE-Juel1)PGI-1-20110106
000190151 980__ $$aI:(DE-82)080009_20140620
000190151 981__ $$aI:(DE-Juel1)PGI-1-20110106