000190166 001__ 190166
000190166 005__ 20220930130042.0
000190166 0247_ $$2doi$$a10.1152/jn.00744.2014
000190166 0247_ $$2ISSN$$a0022-3077
000190166 0247_ $$2ISSN$$a1522-1598
000190166 0247_ $$2WOS$$aWOS:000355000900034
000190166 0247_ $$2altmetric$$aaltmetric:3915118
000190166 0247_ $$2pmid$$apmid:25652924
000190166 037__ $$aFZJ-2015-03095
000190166 082__ $$a610
000190166 1001_ $$0P:(DE-Juel1)145708$$aZimmermann, E.$$b0$$eCorresponding Author
000190166 245__ $$aImpairment of saccade adaptation in a patient with a focal thalamic lesion
000190166 260__ $$aBethesda, Md.$$bSoc.$$c2015
000190166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1431001232_16235
000190166 3367_ $$2DataCite$$aOutput Types/Journal article
000190166 3367_ $$00$$2EndNote$$aJournal Article
000190166 3367_ $$2BibTeX$$aARTICLE
000190166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190166 3367_ $$2DRIVER$$aarticle
000190166 520__ $$aThe frequent jumps of the eyeballs—called saccades—imply the need for a constant correction of motor errors. If systematic errors are detected in saccade landing, the saccade amplitude adapts to compensate for the error. In the laboratory, saccade adaptation can be studied by displacing the saccade target. Functional selectivity of adaptation for different saccade types suggests that adaptation occurs at multiple sites in the oculomotor system. Saccade motor learning might be the result of a comparison between a prediction of the saccade landing position and its actual postsaccadic location. To investigate whether a thalamic feedback pathway might carry such a prediction signal, we studied a patient with a lesion in the posterior ventrolateral thalamic nucleus. Saccade adaptation was tested for reactive saccades, which are performed to suddenly appearing targets, and for scanning saccades, which are performed to stationary targets. For reactive saccades, we found a clear impairment in adaptation retention ipsilateral to the lesioned side and a larger-than-normal adaptation on the contralesional side. For scanning saccades, adaptation was intact on both sides and not different from the control group. Our results provide the first lesion evidence that adaptation of reactive and scanning saccades relies on distinct feedback pathways from cerebellum to cortex. They further demonstrate that saccade adaptation in humans is not restricted to the cerebellum but also involves cortical areas. The paradoxically strong adaptation for outward target steps can be explained by stronger reliance on visual targeting errors when prediction error signaling is impaired.
000190166 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000190166 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000190166 7001_ $$0P:(DE-HGF)0$$aOstendorf, F.$$b1$$eCorresponding Author
000190166 7001_ $$0P:(DE-HGF)0$$aPloner, C. J.$$b2
000190166 7001_ $$0P:(DE-HGF)0$$aLappe, M.$$b3
000190166 773__ $$0PERI:(DE-600)1467889-5$$a10.1152/jn.00744.2014$$gVol. 113, no. 7, p. 2351 - 2359$$n7$$p2351 - 2359$$tJournal of neurophysiology$$v113$$x1522-1598$$y2015
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.pdf$$yRestricted
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.gif?subformat=icon$$xicon$$yRestricted
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.jpg?subformat=icon-180$$xicon-180$$yRestricted
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.jpg?subformat=icon-640$$xicon-640$$yRestricted
000190166 8564_ $$uhttps://juser.fz-juelich.de/record/190166/files/2351.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000190166 8767_ $$92015-04-30$$d2015-05-22$$eColour charges$$jZahlung erfolgt$$zUSD 800,-
000190166 8767_ $$92015-04-30$$d2015-05-22$$ePage charges$$jZahlung erfolgt$$zUSD 675,-
000190166 909CO $$ooai:juser.fz-juelich.de:190166$$pOpenAPC$$pVDB$$popenCost
000190166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145708$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000190166 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000190166 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000190166 9141_ $$y2015
000190166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190166 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190166 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190166 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000190166 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000190166 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000190166 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000190166 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000190166 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000190166 980__ $$ajournal
000190166 980__ $$aVDB
000190166 980__ $$aI:(DE-Juel1)INM-3-20090406
000190166 980__ $$aUNRESTRICTED
000190166 980__ $$aAPC