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The drifts of electron orbits induced by the toroidal electric field in tokamaks are analyzed. Based

on the relativistic Hamiltonian equations for guiding centre motion, the formula for the drift

velocity vdr is derived. It describes the outward drift of passing particles as well as the inward drift

(the Ware pinch) of trapped particles. Unlike the approximate formula for vdr given in Guan et al.

[Phys. Plasmas 17, 092502 (2010)] for circular electron orbits, it describes qualitatively new

features of the outward drift of electron orbits. Particularly, the new formula describes the

evolution of the orbit’s shape, the formation of X-point and the associated separatrix. It is shown

that the outward drift velocity is proportional to the inverse aspect ratio of tokamaks.

[http://dx.doi.org/10.1063/1.4914935]

A consequence of plasma disruptions in tokamaks is the

formation of high energy runaway electrons (REs) that may

cause severe damages to the device wall (see, e.g., Ref. 1).

Those REs are produced by the acceleration of electrons in

large toroidal electric fields induced by the decay of the

plasma current. The dynamics of the RE orbits during that

acceleration is expected to play an important role in the evo-

lution of the RE beam, especially of its decay.

It was shown in Refs. 2 and 3 that the RE orbits as

whole drift continuously outward in the presence of a toroi-

dal electric field in tokamaks. This effect takes place for

electrons of arbitrary energy. For typical parameters during

plasma disruptions, the outward drift velocity vdr may reach

values of the order of several m/s. One expects that this

effect may therefore give a significant contribution to the

decay of the RE beams formed during disruptions.

The formula vdr ¼ qEu=B0 has been obtained in Refs. 2

and 3 for the outward drift velocity of the RE orbits. [Here

B0 is the toroidal magnetic field, Eu is the toroidal electric

field, and q is the safety factor.] It is however approximate

and does not describe well the outward drift velocity in real

situations during plasma disruptions.

In the present letter, we give a rigorous derivation of the

formula for vdr. It describes the outward drift velocity of

passing particles as well as the inward drift (the Ware pinch)

of trapped particles. The formula not only provides the quan-

titative values of vdr but also describes the qualitatively new

features that may occur during the decay phase of the RE

beams. It is shown that drift of the guiding–centre (GC)

orbits in the toroidal electric field is an adiabatic dynamical

process that conserves the area encircled by the GC orbits in

the poloidal plane.

Our considerations are based on the Hamiltonian formu-

lation of relativistic GC motion in a toroidal system (see Ref.

4 for more details). For generality, we consider the motion of

a charged particle of mass m0 and a charge qa¼ Zqe, where e

is the elementary charge, and Zq¼�1 for electrons, respec-

tively, and Zq¼ 1 for protons. We use the cylindrical coordi-

nate system (R; Z;u) where R, Z are, respectively, the radial

and vertical coordinates and u is the toroidal angle. The

magnetic field is given by the vector potential AðR; Z;u;~tÞ
¼ ðAR;AZ;AuÞ we set AR¼ 0 because of a gauge invariance.

The electric field is given by the scalar potential UðR; Z;u;~tÞ
and the time denoted as ~t.

Furthermore, the following notations are introduced:

x¼R/R0 and z¼Z/R0 are the normalized coordinates,

pz¼PZ/m0x0R0 and pu ¼ Pu=m0x0R
2
0 are normalized

momenta, h¼H/Eref, and e0¼m0c
2/Eref are the normalized

energy and rest energy, t ¼ x0~t is the normalized time. Here

H is the full energy, x0¼ eB0/m0 is a reference gyrofre-

quency, B0 is the toroidal magnetic field strength on the mag-

netic axis R¼R0, c is the speed of light in vacuum,

Eref ¼ m0x
2
0R

2
0 is the reference energy.

The Hamiltonian equations of the GC motion are

dqi

ds
¼

@ ~H

@pi
;

dpi

ds
¼ �

@ ~H

@qi
; i ¼ 1; 2ð Þ; (1)

where (q1, q2, p1, p2) are the canonical GC variables, ~H is

the Hamiltonian, and s is the independent variable. If the

time t is chosen as the independent variable, i.e., s¼ t, then

ðq1; q2; p1; p2Þ ¼ ðz;u; pz; puÞ and the Hamiltonian ~H

¼ hðz;u; pz; pu; tÞ is given by

h ¼ e0ct þ Zq/; (2)

where ct ¼ ½1þ ð2xxIx þ u2uÞ=e0�
1=2

is the relativistic factor,

and uu ¼ ðpu þ ZqwÞ=x. Here w ¼ �RAu=B0R
2
0 and /

¼ eU=Eref are the normalized vector and electric potentials,

respectively, xx ¼ jZqj expðpz=ZqÞ is the normalized radial

gyrofrequency, Ix is the normalized adiabatic invariant asso-

ciated with the radial gyro–oscillations.4 The coordinate x is

related to the canonical momentum pz by x ¼ expð�pz=ZqÞ.
For passing particles one can choose the toroidal angle

u as the independent variable s and the corresponding ca-

nonical momentum pu as a new Hamiltonian K ¼ �pu.

Then the pair (q2, p2)¼ (t, pt¼�h) are the canonical varia-

bles. The corresponding Hamiltonian function ~H ¼ K

� Kðz; t; pz; pt;uÞ is given by

K ¼ Zqwðx; z;u; tÞ � rxuuðx; z;u; t; ptÞ; (3)
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where uuðx; z;u; t; ptÞ ¼ ½e0ðc
2
t � 1Þ � 2xxIx�

1=2; ct ¼ ð�pt
�Zq/Þ=e0. In this case the Hamiltonian equations (1) can be

rewritten as

dz

du
¼ �x

@w

@x
þ
xr

Zq
uu þ

xxIx

uu
�
xctZq

uu

@/

@x

� �

;

dpz

du
¼ �Zq

@w

@z
þ
rctx

uu

@/

@z

� �

;
dt

du
¼

rctx

uu
;

dpt

du
¼ �Zq

@w

@t
þ
rctx

uu

@/

@t

� �

:

(4)

Here, the parameter r¼61 stands for the direction of

motion along the toroidal angle u.

The system of Eq. (4) for the GC motion can be pre-

sented in a form similar to the equations for the magnetic

field lines in the cylindrical coordinate system (R; Z;u). We

consider the case when the electric field potential to vanish:

U� 0. Using the definitions, BR ¼ Bu@w=@z and BZ¼�(B0/

x)@w/@x for the poloidal components of the magnetic field

(Bu ¼ R0B0=R is the toroidal magnetic field), one can reduce

the system of Eq. (4) to the form

dZ

du
¼

RB�
Z

Bu

;
dR

du
¼

RBR

Bu

;

d~t

du
¼

rR

vu

;
dH

du
¼ �Zq

@ RAuð Þ

@~t
;

(5)

where vu ¼ uuR0x0=ct is the toroidal velocity, B�
Z is the

effective poloidal field defined as

B�
Z ¼ BZ þ

rBu

Zq
uu þ

xxIx

uu

� �

: (6)

Consider the dynamics of electrons in the presence of

the toroidal electric field. The latter can be represented by

means of the toroidal component of the vector potential

A
ðindÞ
u ðR; Z;~tÞ

Eu R; Z;~tð Þ ¼ �
@A indð Þ

u R; Z;~tð Þ

@~t
: (7)

For simplicity, we suppose that the electric field is deter-

mined by the loop voltage V: Eu ¼ V=2pR0.

The poloidal flux w in the Hamiltonian function (3) is

given by

w ¼ w 0ð Þ
x; zð Þ þ w indð Þ

x; z; tð Þ;

w indð Þ
x; z; tð Þ ¼ �

RA indð Þ
u R; Z;~tð Þ

B0R
2
0

:
(8)

Here w(0)(x, z) is the poloidal flux of the equilibrium plasma.

In the normalized variables, the inductive poloidal flux

w(ind)(x, z, t) can be represented as

wðindÞðx; z; tÞ ¼

ðt

Euðt
0Þdt0; (9)

where EuðtÞ is the normalized toroidal electric field

Eu tð Þ ¼
REu R; Z; tð Þ

B0R
2
0x0

¼
V

2pB0R
2
0x0

: (10)

The variation of energy with time is given by

dh

dt
¼

@h

@t
¼ Zq

@h

@pu

@w

@t
¼ Zq

du

dt

@w

@t
¼

Zquu

xcct
Eu tð Þ: (11)

The energy grows if ZquuEuðtÞ > 0. Furthermore, we

assume that the loop voltage V and thus EuðtÞ are constants

in the poloidal cross section. Then the increment of the parti-

cle energy in one poloidal turn is given by

DE ¼ ErefDh ¼ Eref

ðtþT

t

dh

dt
dt

¼ Erefr2pqef fZqEu tð Þ ¼ rqef fV; (12)

where qeff is the effective safety factor defined as qef f
¼ jDuj=2p; Du is the increment of the toroidal angle u in

one poloidal turn, and T is the normalized transition time.

We now estimate the drift velocity vdr of the RE orbit

induced by the toroidal electric field. We assume axisymme-

try, i.e., w¼w(x, z, t) and uu ¼ uuðx; z; ptÞ. The toroidal mo-

mentum pu is then a constant of motion. According to (3),

the drift surface at time t is determined by

pu ¼ �Zqwðx; z; tÞ þ rxuuðx; z; ptÞ ¼ const; (13)

where the poloidal flux w(x, z, t) is given by (8). According

to the latter and (12), the poloidal flux w and the energy

h¼�pt get, respectively, increments Dw ¼ TZqEu and Dh in

one poloidal turn. Since the increment Dpu ¼ 0, the drift sur-

face is shifted along the radial direction by the distance Dx,

the expression of which can be obtained from (13)

Dx ¼
ZqEu x2pqef f ct=uu � T

� �

Zq
@w

@x
� r uu þ xxIx=uu

� �

� � : (14)

The expression of the orbit’s drift velocity is obtained

from (14)

vdr ¼ x0

DR

T
¼

R0Eu

RB�
Z

1�
RTav

R0
~T

� �

; (15)

where ~T ¼ x�1
0 T is the actual transition time, and

DR¼R0Dx is the radial shift of the orbit. The quantity,

Tav ¼
2pqef f ct
x0uu

¼
2pqef fR0

vu

; (16)

is the average transition time.

Expression (15) is obtained by expansion of (13) with

respect to the radial shift Dx in one poloidal turn, keeping

only the first term. For realistic plasma parameters the shift

Dx is extremely small (�10�7) and the procedure is well jus-

tified. (That has been confirmed by numerical calculations.)

In particular, when ~T ¼ Tav and for low–energy elec-

trons, we have B�
Z � BZ and (15) can be reduced to the

expression obtained in Refs. 2 and 3 for the circular GC

orbits
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vdr ¼ �
Eu R� R0ð Þ

RBZ

¼
qEu

B0

; (17)

where q¼ (R�R0)B0/RBZ is the safety factor.

The drift velocity vdr is proportional to the strength of

the toroidal electric field Eu and to the inverse of the plasma

current Ip, i.e., vdr / I�1
p . The dependence of vdr on the parti-

cle energy E is implicitly given through the effective poloi-

dal magnetic field B�
Z (6), the average transition time Tav (16)

and the transition time ~T . For a given orbit, the quantities B�
Z

and Tav depend on the radial position R on the orbit, i.e., vdr
is a local function of R. Furthermore, we consider the drift

velocities vdf(Ri) and vdf(Ro) at the orbit’s two radial posi-

tions in the equatorial plane Z¼ 0, i.e., its innermost Ri and

outermost Ro points. For REs, the outermost point drifts

faster than the innermost point, i.e., vdf(Ro)> vdf(Ri). This

leads to an elongation of the orbit along the radial direction.

In particular, an initially circular orbit evolves into an oval

shaped one owing to the electron acceleration. Figures 1(a)

and 1(b) illustrate the evolution of the GC orbit and the out-

ward drift velocities vdf(Ri), vdf(Ro) in a tokamak plasma.8

At a certain critical energy Ecr, the GC orbit bifurcates

by creating an unstable fixed point (or X-point) inside the

plasma region. With the further increase of the RE energy,

the orbit crosses the separatrix (a homoclinic orbit associated

the X-point) and hits the wall.

Equation (15) describes not only the outward drift of

passing particles but also the inward drift of trapped particles

known as the Ware pinch7 (see, also Ref. 1). Indeed, for

trapped particles the quantity Tav (16) is much smaller than

the transit time ~T and the expression of the drift velocity vdr

(15) reduces to

vdr ¼
R0Eu

RB�
Z

�
R0Eu

RBZ

: (18)

The average value of vdr (18) over the radial coordinate R

coincides the standard formula for the Ware pinch

vp ¼ �Eu=jBZj.
It is important to note that the drift of the electron GC

orbit in the toroidal electric field is an adiabatic process. The

area encircled by the GC orbit in the poloidal section is thus

conserved, i.e., the integral J ¼ ð2pÞ�1
Þ

C
pzdz is an adiabatic

invariant (C is the closed contour along the GC orbit). The

time-dependence of J for passing electrons is shown by

curve 3 in Fig. 1(b). Figure 2 illustrates the evolution of an

initially trapped electron orbit into a passing one: at a certain

time, due to its inward drift, the banana orbit turns into a

FIG. 1. (a) Evolution of the GC orbit in the presence of the toroidal electric

field. Curve 1 corresponds to the separatrix of the GC orbit of energy

E¼ 27MeV. The plasma current Ip¼ 150 kA, the toroidal field Bt¼ 2.5 T,

the major and minor radii R0¼ 175 cm and a¼ 46 cm, and the loop voltage

V¼ 40V; (b) Time evolution of the outward drift velocity vdr corresponding

to the orbit in (a). Curve 1 corresponds to vdr(Ri), curve 2—to vdr(Ro), and

curve 3 (the right hand axis) describes the adiabatic invariant J(t) normalized

to its initial value J(0).

FIG. 2. (a) Evolution of the GC orbit

of the initially trapped electron in the

presence of the toroidal electric field.

(b) Time dependence of the drift veloc-

ity vdr (15) of the orbit: curve 1 corre-

sponds to the inward drift of trapped

electrons, curves 2 and 20 correspond

to the outermost and innermost points

of the orbit, curve 3 (the right hand

side axis) describes the energy growth.

The plasma parameters are the same as

in Fig. 1, but the plasma current

Ip¼ 100 kA.
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circular orbit and starts drifting outwards with the growth of

the electron energy.

The strong growth of the drift velocity at outermost

point of a GC orbit shown by curve 2 in Fig. 1(b) is related

to the creation of the X-point and the separatrix at a certain

critical energy. This effect is described by the effective

poloidal field B�
Z in Eq. (15): B�

Z decreases with the growth

of the electron energy E and at the critical value Ecr, the field

B�
Z zeroes at the radial distance Rs within the plasma region.

The coordinates (Rs, Zs) of the X-point are determined by the

equations, dR=du ¼ 0; dZ=du ¼ 0, or according to (5) by

the zeros of the effective poloidal field,

B�
ZðRs; ZsÞ ¼ 0; BRðRs; ZsÞ ¼ 0: (19)

The critical energy Ecr for the creation of the X-point can be

estimated using the definition of the effective magnetic field

B�
Z (6). For sufficiently large energy with the relativistic fac-

tor ct � 1, one can assume the longitudinal velocity to be

close to the speed of light, vu � c. Neglecting the last term

in (6), Eq. (19) can be written as

B
sð Þ
Z þ

rBu

Zq

c

R0x0

ct � 0; B
sð Þ
Z ¼ BZ Rs; Zsð Þ: (20)

From (20) one obtains the critical energy Ecr¼m0c
2ct

Ecr � m0c
2 BZ

Bu

�

�

�

�

�

�

�

�

R0x0

c
¼ ceRsjBZj

¼ 2:998	 102RsjB
sð Þ
Z jMeV; (21)

where we set r¼ 1, Zq¼�1, and B
ðsÞ
Z is expressed in Tesla

(T) and Rs is given in meter (m). The critical energy Ecr is

therefore determined by the product of the poloidal field BZ

at the X-point to it’s radial position Rs.

We should note that the formation of the separatrix of

the GC orbit in the toroidal electric field has first been pre-

dicted three decades ago in Ref. 5. This phenomenon has

been only recently confirmed by numerical simulations in re-

alistic tokamak conditions during plasma disruptions.4,6

The outward drift velocity vdr (15) is proportional to the

factor j1� RTav=R0
~T j. This factor is only weekly sensitive

to the toroidal magnetic field B0 and plasma current Ip.

However, it strongly depends on the tokamak aspect ratio

R0/a: at the given energy E, it decreases as R0/a increases.

For large aspect ratios R0/a � 1, the transit time ~T

approaches Tav so that j1� RTav=R0
~T j ! jR0 � Rj=R0

� a=R0, i.e., the outward drift velocity vdr is proportional to

the inverse aspect ratio: vdr / a/R0. Numerical calculations

of j1� RTav=R0
~T j presented in Fig. 3 confirms such a de-

pendence. Therefore, one expects the outward drift velocity

in spherical tokamaks is larger than in standard tokamaks.

We have derived the formula for the radial drift velocity

of electron orbits induced by the toroidal electric field in

tokamaks. It describes the outward drift of passing electrons

as well as the inward drift of trapped electrons. The outward

drift of electrons may give a significant contribution to the

decay of the relativistic electron current created during

plasma disruptions in tokamaks.
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