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The drifts of electron orbits induced by the toroidal electric field in tokamaks are analyzed. Based
on the relativistic Hamiltonian equations for guiding centre motion, the formula for the drift
velocity vy, is derived. It describes the outward drift of passing particles as well as the inward drift
(the Ware pinch) of trapped particles. Unlike the approximate formula for v, given in Guan et al.
[Phys. Plasmas 17, 092502 (2010)] for circular electron orbits, it describes qualitatively new
features of the outward drift of electron orbits. Particularly, the new formula describes the
evolution of the orbit’s shape, the formation of X-point and the associated separatrix. It is shown
that the outward drift velocity is proportional to the inverse aspect ratio of tokamaks.

[http://dx.doi.org/10.1063/1.4914935]

A consequence of plasma disruptions in tokamaks is the
formation of high energy runaway electrons (REs) that may
cause severe damages to the device wall (see, e.g., Ref. 1).
Those REs are produced by the acceleration of electrons in
large toroidal electric fields induced by the decay of the
plasma current. The dynamics of the RE orbits during that
acceleration is expected to play an important role in the evo-
Iution of the RE beam, especially of its decay.

It was shown in Refs. 2 and 3 that the RE orbits as
whole drift continuously outward in the presence of a toroi-
dal electric field in tokamaks. This effect takes place for
electrons of arbitrary energy. For typical parameters during
plasma disruptions, the outward drift velocity v, may reach
values of the order of several m/s. One expects that this
effect may therefore give a significant contribution to the
decay of the RE beams formed during disruptions.

The formula vy = gE, /By has been obtained in Refs. 2
and 3 for the outward drift velocity of the RE orbits. [Here
By is the toroidal magnetic field, E, is the toroidal electric
field, and ¢ is the safety factor.] It is however approximate
and does not describe well the outward drift velocity in real
situations during plasma disruptions.

In the present letter, we give a rigorous derivation of the
formula for v,. It describes the outward drift velocity of
passing particles as well as the inward drift (the Ware pinch)
of trapped particles. The formula not only provides the quan-
titative values of v, but also describes the qualitatively new
features that may occur during the decay phase of the RE
beams. It is shown that drift of the guiding—centre (GC)
orbits in the toroidal electric field is an adiabatic dynamical
process that conserves the area encircled by the GC orbits in
the poloidal plane.

Our considerations are based on the Hamiltonian formu-
lation of relativistic GC motion in a toroidal system (see Ref.
4 for more details). For generality, we consider the motion of
a charged particle of mass mg and a charge g, = Z,,, where e
is the elementary charge, and Z, = —1 for electrons, respec-
tively, and Z, =1 for protons. We use the cylindrical coordi-
nate system (R, Z, ¢) where R, Z are, respectively, the radial
and vertical coordinates and ¢ is the toroidal angle. The
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magnetic field is given by the vector potential A(R,Z, ¢, )
= (Ag,Az,A,) we set A =0 because of a gauge invariance.
The electric field is given by the scalar potential ®(R, Z, ¢, )
and the time denoted as 7.

Furthermore, the following notations are introduced:
x=R/Ry and z=Z/R, are the normalized coordinates,
p.=PzmywoRy and p, = P,/mywoR} are normalized
momenta, h=H/E, ., and & :mocz/E,.(,f are the normalized
energy and rest energy, t = wof is the normalized time. Here
H is the full energy, wo=eBo/my is a reference gyrofre-
quency, By is the toroidal magnetic field strength on the mag-
netic axis R=Ry, c¢ is the speed of light in vacuum,
E,f = mow}R3 is the reference energy.

The Hamiltonian equations of the GC motion are

dqiit?l-} dp; OH .
= o (i=1,2), (1)

dv  Op;’ dt

where (¢q1, ¢2, p1, p2) are the canonical GC variables, H is
the Hamiltonian, and t is the independent variable. If the
time ¢ is chosen as the independent variable, i.e., T=t, then
(91,92,p1,p2) = (z,9,p-,pp) and the Hamiltonian H

= h(Z, (pap27p(p, t) is given by
h = ey, + 249, )

where 7, = [1 + 2., +u,)/ g0)'"? is the relativistic factor,
and u, = (py +Zyp)/x. Here y = —RA,/BoR} and ¢
=e®/ E, s are the normalized vector and electric potentials,
respectively, w, = |Z,|exp(p./Z,) is the normalized radial
gyrofrequency, I, is the normalized adiabatic invariant asso-
ciated with the radial gyro—oscillations.* The coordinate x is
related to the canonical momentum p, by x = exp(—p-/Z,).

For passing particles one can choose the toroidal angle
¢ as the independent variable t and the corresponding ca-
nonical momentum p, as a new Hamiltonian K = —p,,.
Then the pair (g, p») = (¢, p; = —h) are the canonical varia-
bles. The corresponding Hamiltonian function H =K
= K(z,t,p.,p:, @) is given by

K:thp(x,z,q),t) —GXM(ID(X,Z,QD,[,[?I), (3)
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where u(p(-x7 Z, (Patapl‘) = [80(,})[2 - 1) - 2wxlx}]/27 Ve = (_pt
—Z,¢)/¢o. In this case the Hamiltonian equations (1) can be
rewritten as

dZ _ 81// w}clx X%Zq 8(}5
dp 8 +Z (w"’ U u, Ox)’
dp. N oyxdP dt  oyx
-Z e
dp <82 + u, 0z dp  u,’ @
dp: N oyx0
rr_ _z — .
dp <8t N uy, Ot

Here, the parameter ¢ = *1 stands for the direction of
motion along the toroidal angle ¢.

The system of Eq. (4) for the GC motion can be pre-
sented in a form similar to the equations for the magnetic
field lines in the cylindrical coordinate system (R,Z, ¢). We
consider the case when the electric field potential to vanish:
® =0. Using the definitions, Bx = B,0y/0z and Bz = —(B/
X)Oy/0x for the poloidal components of the magnetic field
(B, = RoBo/R is the toroidal magnetic field), one can reduce
the system of Eq. (4) to the form

dZ RB, dR RBg
dp B,  dp B,’
. (5)
G ok dH__ ORA,)
dp v, do T of

where v, = u,Romo/y, is the toroidal velocity, B} is the
effective poloidal field defined as

oB w,l
B, =B, +—2(u, A 6
g Z+Zq<p+”¢> ©

Consider the dynamics of electrons in the presence of
the toroidal electric field. The latter can be represented by
means of the toroidal component of the vector potential
AR, 7,1

0AU)(R, Z, a

% (N

E(/)(Razaf) = -

For simplicity, we suppose that the electric field is deter-
mined by the loop voltage V: E, = V/2nR,.

The poloidal flux y in the Hamiltonian function (3) is
given by

¥ =y 2) + " (x, 2,0,

RAU(R,Z,7) ®)

lp(ind)(xﬂ Z, t) = - B R2
0%o

Here 1“(x, z) is the poloidal flux of the equilibrium plasma.
In the normalized variables, the inductive poloidal flux
" D(x, z, ) can be represented as

P (2, ) = j £, (1)t ©)

where &, (7) is the normalized toroidal electric field
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RE,(R,Z,t Vv
Elt) = B 5? ) _ . (10)
0 0(00 ZHBQRO(UO
The variation of energy with time is given by
dh  Oh _ Oh 0 dpdy Z,u
dr ot 8p,p ot “Udr or Xcy

The energy grows if Z,u,E,(¢f) > 0. Furthermore, we
assume that the loop voltage V and thus £,(¢) are constants
in the poloidal cross section. Then the increment of the parti-
cle energy in one poloidal turn is given by

t+T
dh
—dt
dt

= E,AefO'Z‘IIqe:fqugw( ) = O'qeffv, (12)

AE = E,;sAh = E,ng

where g, is the effective safety factor defined as q.rr
= |A@|/2r, Ag is the increment of the toroidal angle ¢ in
one poloidal turn, and T is the normalized transition time.

We now estimate the drift velocity v, of the RE orbit
induced by the toroidal electric field. We assume axisymme-
try, i.e.,  =y(x, z, t) and u, = u,(x, z,p;). The toroidal mo-
mentum p,, is then a constant of motion. According to (3),
the drift surface at time ¢ is determined by

Po = —ZgW(x,z,1) 4+ oxuy(x, 2, p;) = const, (13)

where the poloidal flux y(x, z, ) is given by (8). According
to the latter and (12), the poloidal flux  and the energy
h=—p, get, respectively, increments Ay = TZ,E,, and Ah in
one poloidal turn. Since the increment Ap,, = 0, the drift sur-
face is shifted along the radial direction by the distance Ax,
the expression of which can be obtained from (13)

qurp (X27T‘Ieff“/t/”r/) B T)

-7 (14)
( qa—a[% —|—a)xlx/uq,])
The expression of the orbit’s drift velocity is obtained
from (14)
AR RoE RT,,
bar = 0 = = et (1= %)), (15)
T RB; RoT

where T = Wy IT is the actual transition time, and
AR = RoAx is the radial shift of the orbit. The quantity,

271G ey,
Woly Uy

_ 2nq¢rRo

Tow = (16)

is the average transition time.

Expression (15) is obtained by expansion of (13) with
respect to the radial shift Ax in one poloidal turn, keeping
only the first term. For realistic plasma parameters the shift
Ax is extremely small (~10~") and the procedure is well jus-
tified. (That has been confirmed by numerical calculations.)

In particular, when T = T,, and for low—energy elec-
trons, we have B, ~ Bz and (15) can be reduced to the
expression obtained in Refs. 2 and 3 for the circular GC
orbits
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FIG. 1. (a) Evolution of the GC orbit in the presence of the toroidal electric
field. Curve 1 corresponds to the separatrix of the GC orbit of energy
E=27MeV. The plasma current /, =150kA, the toroidal field B,=2.5T,
the major and minor radii Ry=175cm and a =46 cm, and the loop voltage
V=40V; (b) Time evolution of the outward drift velocity v, corresponding
to the orbit in (a). Curve 1 corresponds to v,(R;), curve 2—to v,(R,), and
curve 3 (the right hand axis) describes the adiabatic invariant J(f) normalized
to its initial value J(0).

Eo(R—Ro) _qE,
= —_— = 17
. RB;, By (a7
where g = (R — Ry)Bo/RB7 is the safety factor.
The drift velocity v, is proportional to the strength of
the toroidal electric field £, and to the inverse of the plasma

(@)
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current /,,, i.e., vg X I[j 1 The dependence of v, on the parti-
cle energy E is implicitly given through the effective poloi-
dal magnetic field B, (6), the average transition time T, (16)
and the transition time T'. For a given orbit, the quantities B}
and T,, depend on the radial position R on the orbit, i.e., v,
is a local function of R. Furthermore, we consider the drift
velocities v4(R;) and v4(R,) at the orbit’s two radial posi-
tions in the equatorial plane Z=0, i.e., its innermost R; and
outermost R, points. For REs, the outermost point drifts
faster than the innermost point, i.e., v4(R,) > v4(R;). This
leads to an elongation of the orbit along the radial direction.
In particular, an initially circular orbit evolves into an oval
shaped one owing to the electron acceleration. Figures 1(a)
and 1(b) illustrate the evolution of the GC orbit and the out-
ward drift velocities v (R;), v4A(R,) in a tokamak plasma.8

At a certain critical energy E,, the GC orbit bifurcates
by creating an unstable fixed point (or X-point) inside the
plasma region. With the further increase of the RE energy,
the orbit crosses the separatrix (a homoclinic orbit associated
the X-point) and hits the wall.

Equation (15) describes not only the outward drift of
passing particles but also the inward drift of trapped particles
known as the Ware pinch7 (see, also Ref. 1). Indeed, for
trapped particles the quantity 7, (16) is much smaller than
the transit time 7 and the expression of the drift velocity v,
(15) reduces to

_ ROE(p ~ ROErp
RB,  RB; '

Var (18)

The average value of v, (18) over the radial coordinate R
coincides the standard formula for the Ware pinch
v = —E,/|Bz|.

It is important to note that the drift of the electron GC
orbit in the toroidal electric field is an adiabatic process. The
area encircled by the GC orbit in the poloidal section is thus
conserved, i.e., the integral J = (2n)71§cpzdz is an adiabatic
invariant (C is the closed contour along the GC orbit). The
time-dependence of J for passing electrons is shown by
curve 3 in Fig. 1(b). Figure 2 illustrates the evolution of an
initially trapped electron orbit into a passing one: at a certain
time, due to its inward drift, the banana orbit turns into a

(6) 40

FIG. 2. (a) Evolution of the GC orbit
30 of the initially trapped electron in the
presence of the toroidal electric field.
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FIG. 3. Dependence of the factor |1 — RT,, /R0T| in Eq. (15) on the major
radius of plasma Ry: curve 1 corresponds to the innermost point of orbit,
curve 2—to its outermost point, curve 3 describes the ratio |[Ry — R|/Ry. The
difference |R — Ro| is fixed and taken equal to 0.3 m. The plasma current
I,=0.5 MA, the toroidal field Bo=2.5T, and the minor radius @ = 0.46 m.

circular orbit and starts drifting outwards with the growth of
the electron energy.

The strong growth of the drift velocity at outermost
point of a GC orbit shown by curve 2 in Fig. 1(b) is related
to the creation of the X-point and the separatrix at a certain
critical energy. This effect is described by the effective
poloidal field B}, in Eq. (15): B} decreases with the growth
of the electron energy E and at the critical value E,,, the field
B’ zeroes at the radial distance R, within the plasma region.
The coordinates (R, Z;) of the X-point are determined by the
equations, dR/dp = 0,dZ/dp = 0, or according to (5) by
the zeros of the effective poloidal field,

B5(Rs,Zs) =0, Bg(Rs,Zs) =0. (19)
The critical energy E,, for the creation of the X-point can be
estimated using the definition of the effective magnetic field
B (6). For sufficiently large energy with the relativistic fac-
tor y, > 1, one can assume the longitudinal velocity to be
close to the speed of light, v, ~ c. Neglecting the last term
in (6), Eq. (19) can be written as

oB,

BY +—2
z Zq R()(Uo

7, ~0, BY =By(R,Z). (20)

From (20) one obtains the critical energy E., = moczy,

By|R
E, &~ moc?|=% 0% _ ceR;|Bz|
Bq’
=2.998 x 10°R,|B))| MeV, 1)
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where we set 6 =1, Z,=—1, and B@ is expressed in Tesla
(T) and Ry is given in meter (m). The critical energy E,, is
therefore determined by the product of the poloidal field B,
at the X-point to it’s radial position R;.

We should note that the formation of the separatrix of
the GC orbit in the toroidal electric field has first been pre-
dicted three decades ago in Ref. 5. This phenomenon has
been only recently confirmed by numerical simulations in re-
alistic tokamak conditions during plasma disruptions.*®

The outward drift velocity v,, (15) is proportional to the
factor |1 — RT,,/RoT|. This factor is only weekly sensitive
to the toroidal magnetic field By and plasma current /,.
However, it strongly depends on the tokamak aspect ratio
Ry/a: at the given energy E, it decreases as Rp/a increases.
For large aspect ratios Ro/a > 1, the transit time T
approaches T,, so that |1 —RT,,/RoT| — |[Ro—R|/Ro
~ a/Ry, i.e., the outward drift velocity v, is proportional to
the inverse aspect ratio: v, x a/Ro. Numerical calculations
of |1 —RT,,/RoT| presented in Fig. 3 confirms such a de-
pendence. Therefore, one expects the outward drift velocity
in spherical tokamaks is larger than in standard tokamaks.

We have derived the formula for the radial drift velocity
of electron orbits induced by the toroidal electric field in
tokamaks. It describes the outward drift of passing electrons
as well as the inward drift of trapped electrons. The outward
drift of electrons may give a significant contribution to the
decay of the relativistic electron current created during
plasma disruptions in tokamaks.

I would like to thank Dr. André Rogister for his
valuable comments and greatly improving the English.
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