Home > Publications database > Stress Formation within the First Layer in Plasma Sprayed Coatings > print |
001 | 190185 | ||
005 | 20240708132731.0 | ||
037 | _ | _ | |a FZJ-2015-03111 |
100 | 1 | _ | |a Mutter, Markus |0 P:(DE-Juel1)157727 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a International Thermal Spray Conference and Exposition |g ITSC 2015 |c Long Beach, CA |d 2015-05-11 - 2015-05-14 |w USA |
245 | _ | _ | |a Stress Formation within the First Layer in Plasma Sprayed Coatings |
260 | _ | _ | |c 2015 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1432621594_12662 |2 PUB:(DE-HGF) |x Other |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a The residual stresses within plasma sprayed coatings are an important factor which can influence the lifetime of the coatings. The investigation of the evolving stresses during deposition and post-deposition cooling of YSZ coatings by measuring in-situ the specimen’s curvature with the so-called ICP sensor is a powerful tool to identify the different stress generation factors. Under certain spray conditions one can observe that the first torch pass leads to a significantly higher increase in specimen´s curvature than the following deposition passes, which indicates significantly higher stresses within the interface coating region. The reason for this steep curvature increase was investigated. It is suggested to be a combination of a stronger bonding of those splats being connected directly to the substrate and the relief of compressive stress within the substrate. The slope of this increase depends on the spray parameters as well as on the substrate conditions, which was investigated also. Introduction |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |x 0 |f POF III |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
700 | 1 | _ | |a Mauer, Georg |0 P:(DE-Juel1)129633 |b 1 |u fzj |
700 | 1 | _ | |a Mücke, Robert |0 P:(DE-Juel1)129641 |b 2 |u fzj |
700 | 1 | _ | |a Vassen, Robert |0 P:(DE-Juel1)129670 |b 3 |u fzj |
700 | 1 | _ | |a Gibmeier, Jens |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Back, Hyoung Chul |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |y 2015 |
909 | C | O | |o oai:juser.fz-juelich.de:190185 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157727 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129633 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129641 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129670 |
913 | 0 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-122 |2 G:(DE-HGF)POF2-100 |v Power Plants |x 0 |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|