000190186 001__ 190186
000190186 005__ 20240708132731.0
000190186 037__ $$aFZJ-2015-03112
000190186 1001_ $$0P:(DE-Juel1)157727$$aMutter, Markus$$b0$$eCorresponding Author
000190186 1112_ $$aInternational Thermal Spray Conference and Exposition$$cLong Beach, CA$$d2015-05-11 - 2015-05-14$$gITSC 2015$$wUSA
000190186 245__ $$aCorrelation of In-Situ Curvature Measurement and Hole-Drilling Method for Evaluation of Stress States in Thermally Sprayed Coatings
000190186 260__ $$c2015
000190186 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1432726169_29997$$xOther
000190186 3367_ $$033$$2EndNote$$aConference Paper
000190186 3367_ $$2DataCite$$aOther
000190186 3367_ $$2ORCID$$aLECTURE_SPEECH
000190186 3367_ $$2DRIVER$$aconferenceObject
000190186 3367_ $$2BibTeX$$aINPROCEEDINGS
000190186 520__ $$aThe residual stresses within plasma sprayed coatings are an important factor which can influence the lifetime of the coatings crucially. It is very challenging to determine the stress profiles in these coatings since diffraction methods either show a low penetration depth (XRD) or are very complex and time consuming (neutron- and synchrotron-diffraction). The in-situ curvature measurement during deposition and post-deposition cooling is a powerful tool to determine the stress profiles in the as-sprayed coatings. However, there is no possibility to evaluate the change of the stress profile during the lifetime by this method. Therefore the hole-drilling method, which is used already for determination of near-surface stress profiles in single materials, is optimized to allow its application for coating systems. By correlating the curvature measurement and the hole-drilling method for the as-sprayed coatings one can calibrate the latter. This offers the possibility to determine the change of the stress profiles during the lifetime of the coatings.
000190186 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000190186 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000190186 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b1
000190186 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b2
000190186 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3$$ufzj
000190186 7001_ $$0P:(DE-HGF)0$$aBack, H. C.$$b4
000190186 7001_ $$0P:(DE-HGF)0$$aGibmeier, J.$$b5
000190186 773__ $$y2015
000190186 909CO $$ooai:juser.fz-juelich.de:190186$$pVDB
000190186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157727$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000190186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000190186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000190186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000190186 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000190186 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000190186 9141_ $$y2015
000190186 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000190186 980__ $$aconf
000190186 980__ $$aVDB
000190186 980__ $$aI:(DE-Juel1)IEK-1-20101013
000190186 980__ $$aUNRESTRICTED
000190186 981__ $$aI:(DE-Juel1)IMD-2-20101013