001     190186
005     20240708132731.0
037 _ _ |a FZJ-2015-03112
100 1 _ |a Mutter, Markus
|0 P:(DE-Juel1)157727
|b 0
|e Corresponding Author
111 2 _ |a International Thermal Spray Conference and Exposition
|g ITSC 2015
|c Long Beach, CA
|d 2015-05-11 - 2015-05-14
|w USA
245 _ _ |a Correlation of In-Situ Curvature Measurement and Hole-Drilling Method for Evaluation of Stress States in Thermally Sprayed Coatings
260 _ _ |c 2015
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1432726169_29997
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The residual stresses within plasma sprayed coatings are an important factor which can influence the lifetime of the coatings crucially. It is very challenging to determine the stress profiles in these coatings since diffraction methods either show a low penetration depth (XRD) or are very complex and time consuming (neutron- and synchrotron-diffraction). The in-situ curvature measurement during deposition and post-deposition cooling is a powerful tool to determine the stress profiles in the as-sprayed coatings. However, there is no possibility to evaluate the change of the stress profile during the lifetime by this method. Therefore the hole-drilling method, which is used already for determination of near-surface stress profiles in single materials, is optimized to allow its application for coating systems. By correlating the curvature measurement and the hole-drilling method for the as-sprayed coatings one can calibrate the latter. This offers the possibility to determine the change of the stress profiles during the lifetime of the coatings.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|x 0
|f POF III
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 1
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 2
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 3
|u fzj
700 1 _ |a Back, H. C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gibmeier, J.
|0 P:(DE-HGF)0
|b 5
773 _ _ |y 2015
909 C O |o oai:juser.fz-juelich.de:190186
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157727
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 0 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21