Home > Publications database > Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles > print |
001 | 190188 | ||
005 | 20240610121221.0 | ||
024 | 7 | _ | |a 10.1016/j.jconrel.2014.11.007 |2 doi |
024 | 7 | _ | |a 0168-3659 |2 ISSN |
024 | 7 | _ | |a 1873-4995 |2 ISSN |
024 | 7 | _ | |a WOS:000346568700015 |2 WOS |
024 | 7 | _ | |a altmetric:2895535 |2 altmetric |
024 | 7 | _ | |a pmid:25445697 |2 pmid |
037 | _ | _ | |a FZJ-2015-03114 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Seemann, Klaus Michael |0 P:(DE-Juel1)138447 |b 0 |e Corresponding Author |
245 | _ | _ | |a Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles |
260 | _ | _ | |a New York, NY [u.a.] |c 2015 |b Elsevier |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1431344536_7118 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core–shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core–shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma–beta ratio of View the MathML sourceγβ≈30% and a range of approximately 1 mm in biological tissue for the 1.3 MeV β-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension – a prerequisite for hyperthermia treatment of cancer – was observed. A rise in temperature of approximately 3 °C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5 mg/ml after 15 min in an 831 kHz high-frequency alternating magnetic field of 250 Gauss field strength (25 mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |x 0 |f POF III |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Luysberg, M. |0 P:(DE-Juel1)130811 |b 1 |u fzj |
700 | 1 | _ | |a Révay, Z. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kudejova, P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sanz, B. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Cassinelli, N. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Loidl, A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Ilicic, K. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Multhoff, G. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Schmid, T. E. |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1016/j.jconrel.2014.11.007 |g Vol. 197, p. 131 - 137 |0 PERI:(DE-600)1482453-x |p 131 - 137 |t Journal of controlled release |v 197 |y 2015 |x 0168-3659 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/190188/files/1-s2.0-S0168365914007445-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:190188 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)138447 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130811 |
913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l Grundlagen für zukünftige Informationstechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-42G41 |2 G:(DE-HGF)POF2-400 |v Peter Grünberg-Centre (PG-C) |x 0 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|