001     190211
005     20210129215534.0
024 7 _ |2 doi
|a 10.1063/1.4915486
024 7 _ |2 WOS
|a WOS:000357608900015
037 _ _ |a FZJ-2015-03136
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a Adamo, C.
|b 0
245 _ _ |a Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates
260 _ _ |a Melville, NY
|b AIP Publ.
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1431516499_3597
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100) Si by reactive molecular-beam epitaxy (MBE) for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si) are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si). In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Méchin, L.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Heeg, T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Katz, M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Mercone, S.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Guillet, B.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Wu, S.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Routoure, J.-M.
|b 7
700 1 _ |0 P:(DE-Juel1)128631
|a Schubert, J.
|b 8
700 1 _ |0 P:(DE-Juel1)128648
|a Zander, W.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Misra, R.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Schiffer, P.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Pan, X. Q.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Schlom, D. G.
|b 13
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2722985-3
|a 10.1063/1.4915486
|g Vol. 3, no. 6, p. 062504 -
|n 6
|p 062504
|t APL materials
|v 3
|x 2166-532X
|y 2015
856 4 _ |u http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4915486
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/190211/files/Carolina_Adamo_CaTiO3_APL-materials.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:190211
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128631
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128648
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-421
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|v Frontiers of charge based Electronics
|x 0
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21