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We investigate the suitability of an epitaxial CaTiO; buffer layer deposited onto (100)
Si by reactive molecular-beam epitaxy (MBE) for the epitaxial integration of the
colossal magnetoresistive material Lag 751y sMnO3 with silicon. The magnetic and
electrical properties of Lag 7S1y.3MnOj3 films deposited by MBE on CaTiOs-buffered
silicon (CaTiO3/Si) are compared with those deposited on SrTiOs-buffered silicon
(SrTiO3/Si). In addition to possessing a higher Curie temperature and a higher
metal-to-insulator transition temperature, the electrical resistivity and 1/ f noise level
at 300 K are reduced by a factor of two in the heterostructure with the CaTiO; buffer
layer. These results are relevant to device applications of Lag 7Srg sMnQOj thin films
on silicon substrates. © 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4915486]

The full spectrum of electronic, optical, and magnetic properties—e.g., insulating, semicon-
ducting, superconducting, ferroelectric, and ferromagnetic effects—is found within the structur-
ally compatible family of perovskite oxides. The integration of these epitaxial functional ox-
ides with silicon substrates offers significant opportunities for applications."® Among them are
micro-electromechanical systems (MEMS) based on epitaxial piezoelectric layers®~'® and suspended
bolometers based on epitaxial Lag 7Srg3MnOj3 thin films.'* The use of silicon substrates greatly
facilitates the fabrication of MEMS and suspended bolometers, where three-dimensional structures
can be efficiently realized by volume silicon micromachining using conventional techniques such as
isotropic etching in alkaline solutions (KOH, TMAH, etc.) or reactive ion etching.'>!® The ideal case
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for such silicon-based heterostructures is one in which the functional oxide film can be epitaxially
grown directly on silicon. Such direct integration is, however, complicated by the high reactivity
of silicon with oxygen and the disruption of epitaxy that results from the presence of the resulting
amorphous silicon oxide layer at the surface of silicon wafers. An epitaxial buffer layer is, therefore,
a general prerequisite to the growth of epitaxial functional oxides on silicon having high structural
perfection. An additional challenge is the large difference in the thermal expansion coefficients
between silicon and these functional oxides; the ratio of thermal expansion coefficients is about a
factor of three between room temperature and growth temperature.

To fabricate epitaxial structures in which the properties of the underlying silicon and the
overlying film both achieve their full potential, control of the silicon-oxide interface is critical.
Fundamental considerations that must be taken into account in the selection of appropriate epitaxial
buffer layers include chemical and structural compatibilities.'” For the case of silicon, a comprehen-
sive analysis of its thermodynamics stability in contact with binary oxides has been performed.'®
Reactions leading to the formation of interfacial silicide, silicate, or SiO; layers have been reported
when these oxides are exposed to high temperatures during device processing.'® A large number of
oxides have been grown epitaxially on Si (100) or Si (111). The list includes SrTiO3, SrO, BaO,
BaTiO3, CeO,, ZrO,, YSZ, Y,03, Sc,03, Pr,03, Gd;03, La(Y),03, and y-Al,O3 as reviewed by
Reiner et al.?® In terms of structural compatibility, few oxides are well lattice matched to (100)
Si. The lattice match of the small number of oxides with the perovskite structure that has been
epitaxially integrated with (100) Si using a thin (as thin as a single monolayer (ML)) binary oxide
buffer layer is shown in Fig. 1. These include CaTiO3,212% SrTi03,2172° BaTi0s,21%220%7 §r7r0;,28
and SrHfO3.2°° The latter two, SrZrOs and SrHfOs, with pseudocubic lattice constants of 4.101 A
and 4.070 A at room temperature, respectively, lie off the top of Fig. 1.

Among these materials, SrTiOs (cubic cell with ¢ = 3.905 A) has been the most widely pursued
perovskite buffer layer, but due to the large lattice mismatch with Si (1.7%), SrTiO3 begins to relax
for thickness beyond a few nanometers in thickness, drastically degrading the crystalline quality of
the SrTiO3 buffer layer.31 CaTiO3 (orthorhombic unit cell with a = 5.3789 A, b =5.4361 A, and
¢ =7.6388 A at room temperature),’? yielding a pseudocubic lattice constant of 3.822 A, has an
excellent lattice match to (100) Si (cubic cell with ¢ = 5.431 A) as is readily apparent from Fig. 1.
This makes it an obvious candidate as a buffer layer. Thick, commensurate CaTiO3 layers on (100)
Si should be in principle realizable. The excellent lattice match should greatly reduce the in-plane
and out-of-plane rotation variation achievable in epitaxial perovskite layers on (100) Si. Although
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FIG. 1. Temperature dependence of the lattice constants of the perovskites CaTiO3, SrTiO3, and BaTiO3 compared to the
lattice parameter of silicon. The lattice parameters of silicon (and germanium) are divided by V2 as is relevant for the in-plane
epitaxial alignment of (100), ATiO3/(100) Si with [011],, ATiO3 || [001] Si, where the subscript p denotes pseudocubic
indices. The pseudocubic lattice parameter a, of CaTiOs is plotted.
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reported,?!"?> the potential of CaTiO; as a buffer layer to transition from (100) Si to functional

oxides with the perovskite structure has been largely ignored.

In this paper, we show that the mineral perovskite, CaTiO3, can be used as a buffer layer in the
epitaxial transition from (100) Si substrates to perovskite functional oxides, such as Lag 751y 3 MnOs.
We demonstrate here that Lag 7Srg 3sMnOs; films deposited on CaTiO3/Si indeed showed enhanced
electrical properties (e.g., lower electrical resistivity and 1/f noise, and high temperature of the
metal-to-insulator transition) as well as enhanced magnetic properties (higher Curie temperature)
compared to other epitaxial Lag 7St 3MnQs thin films deposited on buffered silicon substrates.?3-3°

We grew epitaxial CaTiOs; thin films on (100) Si by reactive molecular-beam epitaxy (MBE).
The native SiO5 layer was removed from the (100) Si substrate using a strontium assisted process.*’
Two monolayers of strontium metal (corresponding to 1.2 x 10'> atoms/cm?) were deposited at a
substrate temperature of 7 = 600 °C. Then, the substrate temperature was increased to 7 = 800 °C.
At this temperature, the silicon dioxide layer was removed by the formation and evaporation of
SiO,,*’ and a single crystalline reflection high-energy electron diffraction (RHEED) pattern with a
double-domain 2 X 1 (100) Si reconstruction was observed.

CaTiOs films were grown using a codeposition technique in a manner analogous to the leading
technique for producing the highest quality SrTiO3/Si films.>>3! Calcium was evaporated from an
effusion cell and titanium from a Ti-Ball™ sublimation source.*! The fluxes of the constituent
elements, calcium and titanium, were measured using a quartz crystal monitor and typical values
for each element were around 1 x 10'3 atoms/cm? s. A substrate temperature of 330 °C was used to
grow the first 2.5 MLs at a background partial pressure of molecular oxygen of 7 x 10~ Torr. Figure
2(a) shows the RHEED pattern after the deposition of 2.5 MLs of CaTiOs. To improve the crys-
tallinity of the films, the oxygen valve was closed and the substrate temperature was increased, in

iy

FIG. 2. RHEED patterns at various times during the growth of a 50 nm Lag 7Sry.3MnO3/20 nm CaTiO3/Si heterostructure.
(a) After the growth of 2.5 MLs of CaTiO3 at T' =330 °C viewed along the [100],, azimuth of CaTiO;. (b) After the growth
of 2.5 MLs of CaTiOg after annealing in vacuum at 7" = 600 °C viewed along the [100],, azimuth of CaTiO3. (c) After the
growth of 20 nm of CaTiO3 viewed along the [100],, azimuth of CaTiO3. (d) After the growth of 50 nm of Lag 7Srg.3MnO3
completing the heterostructure viewed along the [100],, azimuth of Lag_ 7Sro.3MnOs.
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vacuum, to 580 °C for 15 min (as shown in Fig. 2(b)). Next, the sample was cooled down to 330 °C
to grow a second 2.5 MLs of CaTiOj3 under the same growth conditions as the first 2.5 MLs. Again
the sample was annealed in vacuum at 7' = 580 °C for 8 min. At this temperature, the calcium, tita-
nium, and oxygen shutters were opened simultaneously, and with the oxygen background pressure
at 1 x 1077 Torr, the thickness of the epitaxial CaTiO; layer was grown to 20-40 nm. Figure 2(c)
shows the RHEED pattern at the end of the growth of the 20-nm thick CaTiOj3 layer. Rutherford
backscattering spectrometry/channeling (RBS/C) utilizing He™ ions with an energy of 1.4 MeV was
applied to investigate the composition and crystalline quality of the films. The computer software
RUMP was employed to analyze the RBS data.*’ The films have a Ca:Ti composition ratio of
1.05 £ 0.05. A RBS/C minimum yield ymin = 12% was observed.

Following the growth of the CaTiOs film, 50 nm of Lag 7Sry.s3MnQO3 was deposited on it. The
Lag 7Srp.sMnOs film was grown at a substrate temperature of 670 °C by codeposition in a distilled
ozone background pressure of 5 x 1077 Torr.*> The RHEED pattern at the completion of the 50-nm
thick Lag 7Stp 3sMnOs3 layer completing the Lag 7Stg 3sMnO3/CaTiO3/Si heterostructure is shown in
Fig. 2(d).

Film structural properties and morphology were investigated by X-ray diffraction (XRD) and
by atomic force microscopy (AFM) in tapping mode (Digital Instruments—Nanoscope III). Cross
sectional transmission electron microscopy (TEM) specimens were prepared by mechanical grind-
ing and polishing, followed by argon ion milling (Gatan model 691 Precision Ion Polishing System)
to electron transparency. The samples were examined using a JEOL 3011 high resolution TEM,
operated at 300 kV.

In Fig. 3(a), a #-20 x-ray diffraction scan of the Lag 7Sty 3MnO3/CaTiO3/Si heterostructure is
shown. The labels indicate the 400, series of CaTiO3; and Lag 7519 3MnO3 peaks. As expected, the
Lag 7SrpsMnOs3 film grows under compressive strain which results in a larger out-of-plane lattice
constant ¢ = 3.905 A compared to bulk Lay 7Sty 3MnOs3, which has a pseudocubic lattice spacing
of 3.876 A. Figure 3(b) shows the rocking curve in w of the 200, reflections of the CaTiO3 and
Lag 7Sr9.sMnOj layers of the heterostructure. They have full width at half maximum (FWHM) of
0.67° and 0.71°, respectively. The epitaxy was verified by off-axis ¢ scans of the 110,, CaTiO3 peak
as shown in Fig. 3(b). The peak has a FWHM of 0.86° in ¢. A smooth surface with a root mean
square (RMS) roughness of 0.5 nm was measured over a 1 um X 1 um region by AFM (see Fig. 4).
This is the lowest value reported for manganite films of comparable thickness grown on silicon
substrates. 4447

The microstructure of the Lag 7Sry.3MnO3/CaTiO3/Si epitaxial heterostructure was studied by
TEM. Figure 5(a) shows the overall microstructure of the specimen, including an amorphous SiO,
layer, which formed in situ by the diffusion of oxygen through the growing epitaxial film and oxida-
tion of the underlying silicon substrate during the film growth. The formation of SiO, layers during
growth is common in epitaxial oxide on silicon systems when the oxygen partial pressure is high and
at the same time, the silicon substrate is hot.*84° The out-of-plane linear defects evident in Fig. 5(a)
are rotation domain boundaries, common to CaTiOs. A typical region of the Lag 7Sty 3MnO3/CaTiO3
interface, exhibiting good epitaxy between the two layers, is shown in Fig. 5(b). A selected-area
electron diffraction (SAED) pattern, taken from both film layers simultaneously, is shown in Fig. 5(c).
No spot-splitting is evident, consistent with good epitaxy between the two layers.

We have performed electrical and magnetic measurements on this same sample. Electrical
resistivity measurements as a function of temperature were performed on unpatterned films by
the standard four-probe technique. Magnetization was measured by a superconducting quantum
interference device (SQUID) magnetometer. Figure 6(b) reports the magnetization as a function of
temperature in a field of 0.01 T. The zero-field-cooled (not shown) and field-cooled magnetizations
have been measured. The curve has been fitted by a theoretical standard static Brillouin magnetiza-
tion function. The Lag 7Sro sMnOj3 shows a rapid increase of the magnetic moment below the Curie
temperature T¢c = 360 K, and the saturated magnetization value at low temperature is 3.5 ug/Mn.
These values are similar to the values of bulk Lag 7Sro.3Mn0O3>° and the highest reported for thin
films grown on silicon substrates.*+#”>! The metal-insulator transition temperature is consistent
with the magnetic properties. The temperature dependence of the electrical resistivity is shown in
Fig. 6(a). The film shows a metal-insulator transition temperature, Tyy, higher than 400 K. This
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FIG. 3. (a) 6-26 XRD scans of the same Lag 7Srg.3MnO3/CaTiO3/Si heterostructure whose RHEED patterns are shown in
Fig. 2. (b) Rocking curves in w of the 200, reflection of the Lag_7Srg.3MnOj3 and the 200, reflection of CaTiO3 of the same
heterostructure. (c) ¢-scan of the 110, CaTiO3 peak.

is the highest value reported for Lag 7Sty 3MnO3 grown with or without a buffer layer on silicon
substrates.>6-384447.51-55 Moreover, the electrical resistivity value at 300 K is 1.5 mQ cm, which is
quite similar to bulk Lag 7Sty 3sMnO3,%° and lower by a factor 2 compared to what we have obtained
in the Lag 7S193MnOs; films of comparable thickness deposited on SrTiOs/Si by the same MBE
technique. We also measured the electrical resistivity of a single CaTiO3 layer on (100) Si substrate
to rule out the effect of the oxygen content on the physical properties of CaTiO3.2>> The film was
grown under the same conditions as that used for the CaTiO; part of our Lag 751y 3MnO3/CaTiO3/Si
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1
0.0 1: Height 1.0 pm

FIG.4. 1 pumXx1 pum AFM images in tapping mode of the same Lag 7Sr9. 3MnO3/CaTiO3/Si heterostructure in Figs. 2 and 3.

heterostructures. The inset of Fig. 6(a) shows the electrical resistance as a function of temperature
for a bare 20-nm thick CaTiO; film on a (100) Si substrate. Insulating behavior over the whole
temperature range is observed. This leads us to conclude that both the electrical and magnetic
properties are enhanced compared to those reported in high epitaxial quality Lag 7Sro 3MnO; films
deposited on SrTiO;3 buffered Si substrates,® where Ty and T¢ values were 350 K and 330 K,
respectively. We ascribe the enhancement of these properties to the fact that the Lag 7Srg 3MnOs3
cell is under compressive in-plane strain on CaTiO3/Si as predicted by Millis et al>’ and also
experimentally observed in Ref. 43.

Electrical low-frequency noise measurements were performed at 300 K in the same way as
previously described.?*%% The Lag 7Sty 3MnQ3/CaTiO5/Si thin film was patterned by UV photo-
lithography and argon ion etching to form a 50 ym wide and 150 pm long strip, which includes
two gold pads for supplying the current and two gold pads at which the voltage was measured in
a four-probe geometry. Figure 7 presents the voltage noise spectral density measured at various

100'nm’
T

FIG. 5. TEM micrographs of a Lag 7Srg 3MnO3/CaTiO3/Si heterostructure showing (a) a lower magnification image of
the entire heterostructure, (b) a close-up of the Lag 7Srg.3MnOs3/CaTiO3 interface, and (c) a SAED pattern from both the
Lag_7Srp.3MnO3 and CaTiO3 layers.
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FIG. 6. (a) Resistivity vs. temperature of Lag 7Srp.3MnO3 grown on CaTiO3/Si. The inset shows the resistivity of a 20-nm
thick CaTiOj buffer layer on silicon. (b) Temperature dependence of the magnetization (M (T')) in a magnetic field of 0.01 T
of the same heterostructure shown in Figs. 2—4.

bias currents. We can clearly observe both Johnson (or thermal) noise at high frequency and 1/ f
(or flicker) noise at low frequency. In contrast to Johnson noise, which depends neither on bias
current nor on frequency, the latter gives a frequency and bias current dependent contribution to
noise, which gives an indication of the material quality.®® This 1/ f noise is usually described by the
Hooge empirical relation, which does not have any physical basis, but has been shown to agree well
with experimental observations for homogeneous samples. This relation is given by the following
general formula:®!

Sv Oy 1
I SO 1
V2o laxr M

where Sy is the voltage noise spectral density (V> Hz™!), V is the sample voltage (V), ay is the
Hooge parameter (dimensionless), 7 is the charge carrier density (m~3), Q is the sample volume
(m%), and f is the measuring frequency (Hz). It is very useful to compare the 1/f noise magnitude
in different materials independent of the sample volume and the bias conditions. In order to estimate
the voltage noise spectral density of the material, the noise of the electronic readout and the noise
of the voltage contacts were removed. As presented in the inset of Fig. 7, the quadratic dependence
of the voltage noise spectral density at 1 Hz and at 300 K versus the sample voltage was verified
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FIG. 7. Voltage noise spectral density plots of a 50 um wide by 150 um long strip patterned in the same Lag 7Sry.3MnO3
film of Figs. 2—4 grown on CaTiO3/Si measured at various bias currents. The inset shows the voltage noise spectral density
at 1 Hz versus the sample voltage.

within experimental error bars as expected from Eq. (1), thus enabling a correct estimation of ay/n
values. The normalized Hooge parameters ay/n was then measured to be (4.2 + 0.6) x 1073 m? at
300 K, which is about two times lower than the one measured in Lag 7Sty 3MnO3 films of comparable
thickness deposited on SrTiOs/Si with ay/n values of (9.8 + 0.6) x 103! m? at 300 K and only two
times higher than the one measured in Lag 7Sry s3MnO; films of comparable thickness deposited on
SrTiOj; single crystal substrates with ay/n values of (2.47 + 0.6) X 10731 ;3395859

In conclusion, we have shown the promise of epitaxial (100),-oriented CaTiO3 as a buffer
layer for the integration of functional oxides having the perovskite structure with silicon. Specif-
ically, we have grown high-quality epitaxial Lag 7Srg 3sMnO; films on CaTiO3/Si. Both the Curie
and the metal-to-transition temperatures are the highest reported values for Lag 7Sty 3MnO; thin
films deposited on buffered silicon substrates. The corresponding electrical resistivity and the 1/f
noise level are decreased by a factor of two compared to those measured in high-quality epitaxial
Lag 7Srp.3sMnO; thin films of comparable thickness deposited on SrTiOs3/Si. These films exhibit
magnetic and electrical properties comparable with bulk Lag 7Sry s3MnO3, making them of interest
for room temperature applications on silicon substrates.
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