001     190231
005     20211018113106.0
024 7 _ |a 10.1038/nclimate2614
|2 doi
024 7 _ |a 1758-678X
|2 ISSN
024 7 _ |a 1758-6798
|2 ISSN
024 7 _ |a altmetric:3985640
|2 altmetric
024 7 _ |a WOS:000356814800036
|2 WOS
037 _ _ |a FZJ-2015-03151
082 _ _ |a 550
100 1 _ |a Frank, D. C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Water-use efficiency and transpiration across European forests during the Anthropocene
260 _ _ |a London
|c 2015
|b Nature Publ. Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435329892_21658
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1, 2, 3. However, uncertainties in the magnitude4, 5, 6 and consequences7, 8 of the physiological responses9, 10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 1
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Poulter, B.
|0 P:(DE-HGF)0
|b 1
|e Corresponding Author
700 1 _ |a Saurer, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Esper, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huntingford, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Helle, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Treydte, K.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zimmermann, N. E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schleser, Gerhard, Hans
|0 P:(DE-Juel1)129572
|b 8
700 1 _ |a Ahlström, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ciais, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Friedlingstein, P.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Levis, S.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lomas, M.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sitch, S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Viovy, N.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Andreu-Hayles, L.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Bednarz, Z.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Berninger, F.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Boettger, T.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a D‘Alessandro, C. M.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Daux, V.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Filot, M.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Grabner, M.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Gutierrez, E.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Haupt, M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Hilasvuori, E.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Jungner, H.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Kalela-Brundin, M.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Krapiec, M.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Leuenberger, M.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Loader, N. J.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Marah, H.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Masson-Delmotte, V.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Pazdur, A.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Pawelczyk, S.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Pierre, M.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Planells, O.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Pukiene, R.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Reynolds-Henne, C. E.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Rinne, K. T.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Saracino, A.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Sonninen, E.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Stievenard, M.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Switsur, V. R.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Szczepanek, M.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Szychowska-Krapiec, E.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Todaro, L.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Waterhouse, J. S.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Weigl, M.
|0 P:(DE-HGF)0
|b 49
773 _ _ |a 10.1038/nclimate2614
|0 PERI:(DE-600)2603450-5
|p 579–583
|t Nature climate change
|v 5
|y 2015
|x 1758-6798
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/190231/files/nclimate2614.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:190231
|p VDB
|p VDB:Earth_Environment
910 1 _ |a IBG-2-3-TAV
|0 I:(DE-Juel1)IBG-2-3-TAV-20110204
|k
|b 8
|6 P:(DE-Juel1)129572
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
913 0 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
913 1 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a WoS
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21