000190257 001__ 190257
000190257 005__ 20210129215539.0
000190257 037__ $$aFZJ-2015-03170
000190257 0881_ $$aKFA-ZAM-IB-9412
000190257 088__ $$2JUEL$$aKFA-ZAM-IB-9412
000190257 1001_ $$0P:(DE-HGF)0$$aBücker, Martin$$b0
000190257 245__ $$aA Comparison of QMR, CGS and TFQMR on a Distributed Memory Machine
000190257 260__ $$aJülich$$bZentralinstitut für Angewandte Mathematik$$c1994
000190257 300__ $$a14 p.
000190257 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$breport$$mreport$$s1431524990_1323
000190257 3367_ $$2DataCite$$aOutput Types/Report
000190257 3367_ $$2BibTeX$$aTECHREPORT
000190257 3367_ $$2ORCID$$aREPORT
000190257 3367_ $$010$$2EndNote$$aReport
000190257 3367_ $$2DRIVER$$areport
000190257 520__ $$aFor the solution of systems of linear equations with general non-Hermitian nonsingular coefficient matrices, an implementation of three different algorithms on a parallel machine with distributed memory is proposed. Each of the three algorithms, QMR, CGS and TFQMR, contains two matrix-vector products that dominate the execution time. While the matrix-vector products of CGS and TFQMR are dependent this is not valid for QMR. The two matrix-vector products of QMR can be computed simultaneously. This paper shows how the performance of a parallel implementation is increased by exploiting this property. Timing results of all three algorithms on an Intel PARAGON XP/S 10 system are presented.
000190257 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000190257 7001_ $$0P:(DE-HGF)0$$aBasermann, Achim$$b1
000190257 773__ $$y1994
000190257 8564_ $$uhttps://juser.fz-juelich.de/record/190257/files/ib-9412.pdf$$yRestricted
000190257 8564_ $$uhttps://juser.fz-juelich.de/record/190257/files/ib-9412.gif?subformat=icon$$xicon$$yRestricted
000190257 8564_ $$uhttps://juser.fz-juelich.de/record/190257/files/ib-9412.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000190257 8564_ $$uhttps://juser.fz-juelich.de/record/190257/files/ib-9412.jpg?subformat=icon-180$$xicon-180$$yRestricted
000190257 8564_ $$uhttps://juser.fz-juelich.de/record/190257/files/ib-9412.jpg?subformat=icon-640$$xicon-640$$yRestricted
000190257 909CO $$ooai:juser.fz-juelich.de:190257$$pVDB
000190257 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000190257 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000190257 920__ $$lyes
000190257 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000190257 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000190257 980__ $$areport
000190257 980__ $$aVDB
000190257 980__ $$aI:(DE-Juel1)VDB62
000190257 980__ $$aI:(DE-Juel1)JSC-20090406
000190257 980__ $$aUNRESTRICTED
000190257 981__ $$aI:(DE-Juel1)JSC-20090406