FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fur Angewandte Mathematik
D-52425 Julich, Tel. (02461) 61-6402

Interner Bericht

SVM Support in the
Vienna Fortran Compiling System

Peter Brezany*, Michael Gerndt, Viera Sipkova*

KFA-ZAM-1B-9401

Januar 1994
(Stand 27.01.94)

(*) Department of Statistics and Computer Science, University of Vienna

SVM Support in the Vienna Fortran Compilation System *

Peter Brezany
University of Vienna

brezany@par.univie.ac.at

Michael Gerndt
Research Centre Julich(KFA)
m.gerndt@kfa-juelich.de

Viera Sipkova
University of Vienna

sipka@par.univie.ac.at

January 27, 1994

Abstract

Vienna Fortran, a machine-independent language ex-
tension to Fortran which allows the user to write pro-
grams for distributed-memory systems using global
addresses, provides the forall-loop construct for spec-
ifying irregular computations that do not cause inter-
iteration dependences. Compilers for distributed-
memory systems generate code that is based on run-
time analysis techniques and is only efficient if, in
addition, aggressive compile-time optimizations are
applied. Since these optimizations are difficult to
perform we propose to generate shared virtual mem-
ory code instead that can benefit from appropriate
operating system or hardware support. This pa-
per presents the shared virtual memory code gener-
ation, compares both approaches and gives first per-
formance results.

Keywords: distributed-memory systems, shared
virtual memory systems, compile-time optimization,
runtime analysis, Fortran language extensions

1 Introduction

Massively parallel computers (MPP) offer an im-
mense peak performance. Current architectures con-
sist of hundreds of nodes with physically distributed
memory and are either pure distributed memory sys-
tems (Paragon), hardware-supported shared memory
systems (KSR,Cray T3D), or software-based shared
virtual memory machines (IVY, iPSC2/Koan).
Shared virtual memory (SVM) machines provide a
global address space on top of physically distributed

*The work described in this paper was carried out as part
of the ESPRIT 3 project “Performance-Critical Applications
of Parallel Architectures (APPARC)”, the P2702 ESPRIT re-
search project “An Automatic Parallelization System for Gen-
esis” funded by the Austrian Ministry for Science and Research
(BMWF), and the research project "High-level Programming
Support for Parallel Systems” funded by the Austrian Science
Foundation (FWF).

memory via an extension of the virtual memory pag-
ing mechanism [5]. Page faults on one processor are
served by another processor which currently has the
page of the global address space in its private mem-
ory. On such systems message passing and shared
memory are both available for data exchange among
processors.

The two main challenging problems of MPP sys-
tems are to increase the sustained performance of
real applications on such systems by hardware and
software enhancements and to develop programming
models and tools making programming of these ma-
chines easier.

Recently, High Performance Fortran (HPF) was de-
veloped based on Vienna Fortran [20] and Fortran D
[13] with the goal to ease programming MPP sys-
tems for data parallel applications. The current ver-
sion supports regular grid-based applications via data
partitioning annotations. Algorithms for the compi-
lation of such a programming model have been de-
veloped and implemented in some research tools and
products, e.g. Superb [4], Fortran D environment
[15], xHPF [1].

Current research is going into an extension of HPF
supporting irregular computations. Vienna Fortran
and Fortran D provide language constructs, such as
irregular distribution formats and parallel loops with
work distribution specification. Both projects are
working on the message passing implementation of
these constructs. The implementation has to per-
form aggressive compile-time optimizations to reduce
the storage and runtime overhead. These optimiza-
tions are difficult to perform for applications where
the problem structure depends on runtime data or is
dynamic.

The goal of the work described in this paper is to
study the compilation of Vienna Fortran for SVM
machines exploiting the strength of both concepts,
message passing and shared memory communication.
Language extensions for regular grid-based applica-
tions are still translated into message passing code

since the compiler can generate efficient code based
on compile-time information. The compiler is able
to translate language features for irregular compu-
tations into both, message passing code and shared
virtual memory code. Shared memory code genera-
tion facilitates compile-time optimizations, implicitly
exploits locality due to page migration among proces-
sors, and can use runtime optimizations such as data
prefetching. Our long term goal is to find criteria for
the selection of the better code generation strategy
for a given input code fragment.

Section 2.1 presents the Vienna Fortran language
extensions. The basic message passing compilation
scheme is introduced and evaluated in Section 2.2.
In Section 2.3 we present the basic SVM compilation
and Section 3 describes the algorithm used to opti-
mize the interface among message passing and SVM
code generation. Section 4 gives some first perfor-
mance comparisons.

2 Code Generation for Irregu-
lar Data-Parallel Loops

2.1 Forall Loops

Vienna Fortran supports explicitly parallel loops
called FORALL!-loops which are mainly used for
specification of irregular computations. A precondi-
tion for the correctness of this loop is the absence of
loop-carried dependences except accumulation type
dependences.

The general form of the forall-loop is as follows:

FORALL (Iy=séty, ... , [n=s€ty,) [work_distr_spec]
forall-body
END FORALL

where for 1 < j < n, I; are index names and
séc; are subscript triplets of the form I;, u;, s; which
must not contain references to any index name. If
the value of s; equals one, s; can be omitted. If j
equals one, the header parenthesis can also be left
out. work_distr_spec denotes an optional work distri-
bution specification.

The iterations of the loop may be assigned explic-
itly to processors by work distribution annotations,
i.e. an optional on-clause specified in the forall-loop

header.

!Note that the forall-loop, as introduced here, is not the
forall-loop proposed during the development of Fortran 90 and
in HPF.

FORALL i = 1N ON OWNER(C(K(i)))
Y(K(1))=X(K(1))+C(K1))*Z(K())
END FORALL

(a) Parallel loop with indirect accesses

FORALL i = 1, N ON PID(NOP(i))
REAL T

REDUCE (ADD, X, A(Y(i)))
END FORALL
(b) Summing values of a distributed array
FORALL i — 1, N
REDUCE (ADD, B(X(i)), D(Y(i))*E(Z(i)))
END FORALL

(c) Accumulating values onto a distributed array

Figure 1: Parallel loops.

The on-clause in the example shown in Figure 1
(a) specifies that the 4-th iteration (1 < ¢ < N) of
the loop is executed on the processor which owns
C(K(i)). In the second parallel loop (Figure 1(b))
the on-clause directly refers to the processor array
P1D. The sth iteration is assigned to the kth proces-
sor where k is the current value of the array element
which is denoted by NOP(i). T is declared private in
this forall loop. Logically, there are N copies of the
variable T', one for each iteration of the loop. Assign-
ments to private variables do not cause loop-carried
dependences.

A reduction statement may be used within forall-
loops to perform global operations, such as global
sums; the result is not available until the end of the
loop. The forall-loop in Figure 1(b) computes the
sum of some of the array elements of A and places the
result in variable X. In each iteration of the forall-loop
in Figure 1(c), elements of D and E are multiplied,
and the result is used to increment the corresponding
element of B. In general, all arrays B, D, E, X, Y,
and Z can be distributed. In this example the user
presumes the compiler will automatically derive the
work distribution.

Moreover, the language enables the user to specify
Block or Cyclic work distribution strategy.

2.2 Message Passing Code Generation

The strategy used generates two code phases for
forall-loops, known as the inspector and the execu-
tor [16, 18]. They both are supported by the run-
time libraries [11, 12] 2. The inspector analyzes the
communication patterns of the loop, computes the
description of the communication, and derives trans-
lation functions between global and local accesses,
while the executor performs the actual communica-
tion and executes the loop iterations.

The inspector consists of three steps. The first step
performs the construction of translation tables for
irregularly distributed arrays® occurring in a forall-
loop. The translation table is constructed from the
mapping array, recording the owner of each datum
and its local index. To economize storage, one trans-
lation table is constructed for all arrays with the same
shape and the same distribution.

The second step computes the
exec(p), i.e. the set of loop iterations to be executed
on processor p . The work distribution specification,
if introduced, determines the execution set. For the
example in Figure 1(a), the execution set is given by:
ezec(p) = {i | K(i) €local®(p) A 1 < i < N}
where local® (p) denotes the set of indices of elements
of array C that are stored on processor p.

The third step performs a dynamic loop analysis.
Its task is to describe necessary communication by a
set of so called schedules that control runtime pro-
cedures moving data between processors in the sub-
sequent executor phase. The dynamic loop analysis
also establishes an appropriate addressing scheme to
access local elements and copies of non-local elements
on each processor.

Information needed to generate a schedule, to al-
locate a buffer, and for the global to local index
conversion for a given distributed array reference
A(f(i)) can be produced from the global reference list
global_ref4(p), along with the knowledge of the dis-
tribution of A. The global reference list is computed
from the subscript function f(i) and from exec(p).

To build global_refa(p), the forall-body is partially
interpreted. The slicing ([19]) of the forall-body re-
duces the code duplication to the level needed to eval-
uate f(¢). Let V be the set of all variable references
occuring in f(4). The slice of the forall-body with re-
spect to statement S and the variable references in V'

execution set

2The Parti library [12] has been the first system constructed
to support the handling of irregular computations. On top of
the Parti an extended library [11] is being built to support all
Vienna Fortran and HPF distributions and alignments.

3In this case, array elements are arbitrarily assigned to pro-
cessors as it is specified by a mapping array.

consists of all statements and predicates of the forall-
body that might affect the values of elements of V'
in statement S. However, some temporary variables
must be allocated to avoid overwriting live data. Af-
ter introducing these temporary variables, the refer-
ence A(f(7)), originally occuring in S, is transformed
into A(f'(4)) in the slice. f/(3) results from f(¢) by
substituting some original variables with temporary
variables. Figure 2 shows a scheme for computing
global_ref4(p). In this figure, the function value com-
putes the value of f'(¢), nil denotes the empty list,
and append appends an item to the end of the list.

global_refa (p) = nil
foreach i € exec(p) do
- slice execution - - -
global_refa(p) = global_refa(p) append value(f'(z))
end foreach

Figure 2: Computation of global_ref(p).

The list global_refs(p) and the distribution of A
are used to determine the communication pattern, i.e.
a schedule, the size of the communication buffer to be
allocated, and the local reference list local_refs(p)
which contains results of global to local index con-
version. The declaration of array A in the message
passing code allocates memory for the local segment
holding the local data of A and the communication
buffer storing copies of non-local data. The buffer
is appended to the local segment. An element from
local_re f4(p) refers either to the local segment of A or
to the buffer. A localindex inlocal_ref4(p) is derived
from the corresponding element of global_ref4(p).

The executor is the second phase in the execu-
tion of the forall-loop; it performs communication de-
scribed by schedulers, and performs the actual com-
putations for all iterations from exec(p). In general,
no synchronization at the beginning and the end of
the loop is needed. The schedulers control communi-
cation in such a way that execution of the loop using
the local reference list accesses the correct data in
local segments and buffers.
for the computation on processor p is gathered from
other processors by the runtime communication pro-
cedure Gather. It accepts a schedule, an address of
the local segment, and an address of the buffer as
input parameters. On the other hand, the non-local
data computed on processor p are moved by the pro-
cedure Scatter into their permanent addresses.

Several experiments demonstrated that the above
techniques can be used for dealing effectively with

Non-local data needed

some typical irregular computations. However, some
difficulties can occur when attempting to adapt an
irregular code for a distributed-memory system.

In the case, when an indirect indexed array A oc-
curing in the forall loop is aligned with an array B
such that array element A(7) is aligned to array el-
ement B(k x i+ o) and array B is distributed using
a CYCLIC(M) distribution, the global to local in-
dex conversion is very costly. It has to be computed
element-wise, using techniques introduced in [10], for
example. This computation can be also done via a
table. However, the translation table generated for
an array with n elements contains 2 # n items and,
therefore, it is distributed as well and communica-
tion is potentially needed to get some information
from the table.

Extents of execution sets, lengths of global refer-
ence and local reference sets and sizes of communi-
cation buffers are unknown at compile time. In the
standard Fortran 77 environment, shapes of arrays
that implement the above concepts must be overesti-
mated to guarantee the safe computation as much as
possible. Therefore processors can quickly run out of
memory space.

Generation of schedules can also cause high run-
time overhead. There are a variety of situations in
which the same data need to be accessed by multi-
ple loops. The runtime support makes it possible to
reuse non-local data copies by generating incremen-
tal schedules that include only non-local data accesses
not included in the preexisting schedules. The pro-
gram analysis has to determine when it is safe to use
incremental schedules and reuse the schedules gener-
ated. The dataflow framework described in [14] aims
at providing information about which data are needed
at which points in the code, along with information
about which live non-local data are available. How-
ever, it only considers the intraprocedural level and it
works under many simplified assumptions. A simple
conservative runtime method is proposed in [17] that
allows to reuse the results from inspectors in many
cases. In this method a record is maintained whether
a distributed array is modified. In such a case, val-
ues have to be exchanged again. When using this
method, the compiler generates code that at runtime
maintains a record of when a forall-loop may have
written to a distributed array. However, there is a
high runtime overhead in some cases.

2.3 SVM Code Generation

Message passing code generated for forall-loops with
irregular accesses has to compute remote accesses

precisely at runtime. In SVM systems instead, data
movement is implicit when a process references a da-
tum in the global address space also called shared
memory. The Vienna Fortran Compilation System
therefore translates forall-loops for SVM systems in
a different way. Distributed arrays accessed in the
forall loop are copied to the global address space such
that references are resolved automatically. When ref-
erencing a variable that is not available in the phys-
ical memory of the processor, the appropriate page
or cache line is automatically transferred to that pro-
Cessor.

Phase 1: Work Distribution
Compute ezec(p).

Phase 2: Array Globalization
Copy the local part of distributed
arrays read or written in the forall-loop
to the shared memory.

Phase 3: Execute Local Iterations
Execute the iterations in exec(p).
Phase 4: Array Localization

Copy local parts of modified arrays
back to process private memory.

Figure 3: SVM Code

The code generated for individual forall-loops is
outlined in Figure 3. The first phase computes the
execution set according to the specified work distribu-
tion. This phase is implemented in the same way as in
the message passing version. The second phase copies
the distributed arrays accessed in the forall-loops to
the global address space (array globalization). The
third phase executes the iterations in the local exe-
cution set, and in the last phase the modified arrays
are copied back to the process’s private memories (ar-
ray localization). Global synchronizations have to be
performed after phase 2, to ensure that no process
accesses a datum in the global address space before
it is initialized, and prior to phase 4, to ensure that
all assignments have been performed before data are
copied back. The forall-loop is thus translated in a
classical parallel loop with a pre-phase of globalize
operations and a following phase of localize opera-
tions.

The amount of shared memory needed for dis-
tributed arrays accessed in the forall-loops of a unit
is dynamically allocated at the start of the program
unit and deallocated at the end. For each such dis-
tributed array a new array is declared with the origi-

nal shape. The new arrays are allocated dynamically
in the shared memory segment (cf. Section 3.4).

3 SVM Code Optimization

The main drawback of this code generation scheme
is that the globalize and localize operations are per-
formed for each forall-loop although in a sequence of
forall-loops only the first has to globalize an array
and the last loop has to localize it again. In addition,
if no globalization has to be performed the synchro-
nization before the loop can be eliminated.

Therefore, we designed and implemented an opti-
mization that eliminates redundant globalize and lo-
calize operations. The optimization is based on the
assumption that globalize and localize operations can
only be performed at the start and end of the unit
and before and after each forall-loop. We do not allow
such operations to be inserted arbitrarily.

The overall algorithm consists of a top-down and a
bottom-up phase that are repeated until no changes
occur. Each phase solves a dataflow problem which
depends on the results of the previous phase. The
top-down problem is called the reaching distributed
arrays problem (REDAP) and the bottom-up prob-
lem is the required distributed arrays problem (RQ-
DAP). The result of this optimization is the informa-
tion which arrays have to be globalized at the start of
the unit, which arrays have to be localized at the end,
and which arrays have to be globalized or localized
for individual forall-loops.

Both problems, REDAP and RQDAP, can be de-

scribed using the following notation:

e G(N £, entry,exit) is the program graph where A/
is the set of nodes representing the statements, &£
the set of arcs, entry the first statement, and exit
the last statement. In the program graph entire
forall-loops are condensed to a single node.

e A is the set of arrays distributed via language
annotations and accessed in a forall-loop.

e L=P(A) is the data flow information set.

e SH: N — L is a function that defines for each
forall-loop the set of accessed arrays from A .
These arrays are shared in the SVM implemen-
tation.

¢ TOPDOWN, BOTTOMUP is the direction of
the data flow problem, which defines whether the
effect of joining paths at a node is the union of
the predecessors or the successors.

globalize(B)
forall
SH(Nny)={B}

globalize(A)

forall

N3 SH(Ng)={A}
forall
Ny
SH(Ng)={A}

localize(A)

localize(B)

Figure 4: Program Graph

e T is the set of functions on £ that includes for
each node n a function f,,: £ — £ describing the
effect of that node on the data flow information.

The example shown in Figure 4 illustrates the def-
initions. The localization of B after ny and its glob-
alization prior to ng resulting from the basic imple-
mentation are redundant. The same is true for A
between ns and ng. The assignment to A in node ny4
requires that A is distributed when the statement is
executed. The final localize and globalize operations
resulting from our optimization are presented in the
figure. After the following description of the opti-
mization algorithms we explain how this final result
is obtained.

3.1 Reaching Distributed Arrays

The REDAP is the problem of determining, for each
node, all arrays in .4 that may be distributed when
the statement is executed. The solution is described
by a function RE: A — £. REDAP is a top-down
problem.

(X \SH(n)) U{A € A|A is localized}

n 1s forall

(a) fo(X):=< {4 € AlAisnot globalized} n is entry
X otherwise
(X \SH(n))U{A € A|A is globalized} nis forall

() fo(X):=< {A€ A|Aisnotlocalized} nis exit
X U{A € A|A is accessed in n} otherwise

Figure 5: Propagation Functions of REDAP and RQDAP

The propagation functions in Frp are defined in
Figure 5(a). An array accessed in a forall is shared
after the loop if it is not explicitly localized after the
forall, independent of whether it was distributed prior
to the forall. An array is distributed after the entry
statement if it is not explicitly globalized by the en-
try statement since we require that arrays in A are
distributed at start of the unit.

3.2 Required Distributed Arrays

The RQDAP is the problem of determining, for each
node, all arrays that have to be distributed after the
statement was executed. The solution is described
by the function RQ: N'—= L. RQDAP is a bottom-up
problem.

The propagation functions in Frg are defined in
Figure 5(b). If an array is globalized by a forall this
array has to be distributed whenever the forall is ex-
ecuted. An array that is accessed in a forall but not
globalized need not be distributed when the forall is
executed independent of whether it has to be dis-
tributed after the forall.

An array has to be distributed when the exit node
is executed if it is not localized by the exit node be-
cause all arrays have to be distributed when the unit
is finished.

Each array accessed in another statement, i.e. out-
side of forall-loops, has to be distributed when the
statement is executed.

3.3 Optimization Algorithm

Both data flow problems are solved with the basic
iterative algorithm shown in Figure 6.
The calls

find_solution(G,Frg,RE,TOPDOWN entry)
find_solution(G,Frqg,RQ,BOTTOMUP,exit)

find_solution(G,F x,direction,s)
stable=false
while (not stable) do
stable=true
foreach n € N\{s} do
if (direction=TOPDOWN) then
new = Frr (2(n")

n!'€ pred(n)

else

new = U

n! € suce(n)

Far (2(n"))

endif
if (new#x(n)) then
x(n)=new
stable—=false
endif
end foreach
end while
end

Figure 6: Iterative Solver for REDAP and RQDAP

with the initializations
Vn€N RE(n)=RQ(n)=190
solve REDAP and RQDAP respectively.

The optimized interface among message passing
code generation and SVM code generation can now
be described as the pair of functions RE and RQ.
The code generation will then generate localize and
globalize operations according to the following rules:

entry statement

VA € A\ RQ(entry) globalize(A)

exit statement
VA € A\ RE(exit) localize(A)
forall statement

VA € SH(forall) N RE(forall) globalize(A)
VA € SH(forall) N RQ(forall) localize(A)

The computation of the optimized interface is per-
formed by the procedure shown in Figure 7.

compute_interface(G,RE,RQ)
Vn € N RE(n)=RQ(n)=0
stable=false
while (not stable) do
stable=true
find_solution(G, Fro(RE),RQ,BOTTOMUP,exit)
x=RE
find_solution(G, Fre(RQ),x, TOPDOWN entry)
if (x#ARE) then
RE=x
stable=false
endif
end while
end

Figure 7: Interface Optimizer

The algorithm iteratively solves RQDAP and
REDAP until RE is no longer changed. In each it-
eration the current solution, RE and RQ, determines
the propagation functions of the nodes in the next
problem according to the rules described above.

For example, if a statement following a forall-loop
requires that an array is distributed and that array
is accessed in the forall loop and thus is copied to
shared memory, a localization has to be performed
after the loop. The solution of RQDAP determines
that the localization has to be done and this localize
operation has to be taken into account when REDAP
is solved afterwards.

Therefore, the propagation functions of REDAP
and RQDAP have to be parameterized according to
the current solution RE and RQ. The parameterized
propagation functions are defined in Figure 8.

The algorithm starts with the assumption that all
arrays accessed in any forall-loop are globalized at the
beginning and keeps them shared as long as possible.

We use the example program graph in Figure
4 to illustrate the algorithm. First, RQDAP is
solved. Here the only requirement is that A

has to be distributed in n4. This is propagated
in the program graph. The solution of RQDAP
is: RQ(n1)= RQ(n2)= RQ(n3)={A} and RQ(n4)=
RQ(TL5)I RQ(TLe)I RQ(TL7)I w

Now, REDAP is solved taking RQ into account.
Since RQ(n1)={A} A is not globalized by the en-
try statement. The solution of this step is RE(ng)=
RE(n3)= RE(n4)= RE(ns)= RE(n7)={A}. Since
both solutions of REDAP and RQDAP were changed
another iteration has to be performed. This itera-
tion is necessary because the current solution is in-
correct. The exit statement will not localize A since
RE(exit)={A}. But A is only distributed if the con-
trol flow goes through ns and not through ns. The
next computation of RQDAP now propagates the in-
formation that A has to be distributed to ng. In the
final solution RE is unchanged and RQ(ns)= 0 and
for all other nodes RQ(n)= {A}.

The convergence of the interface optimization al-
gorithm results from the proof in [9] for monotone
data flow systems and the following properties of the
algorithm:

e (L,U) is a bounded semilattice,

e the propagation functions of the parameterized
problems REDAP and RQDAP are distributive

functions on £, and

eVneNzel: fu(z)<fl(z)

where either

fn € FRGE fh € Fra

or

fn € FRES, fr € FrE
and

Fre® ig the set of propagation functions in the
next iteration of the while-loop in
compute_interface.

Due to these properties the solutions RE(n) and
RQ(n) for each node n in each iteration in com-
pute_interface include at least those arrays that were
included in the previous iteration. Since the number
of arrays in A is fixed the algorithm will terminate.

In the basic interface (Figure 3) only the modified
shared arrays are localized after a forall-loop. A sim-
ilar optimization can also be applied to the optimized

(X \ SH(n)) U RQ(n)
an € TRE(RQ) fn(X) = RQ(TL)
X

(X \ SH(n)) U RE(n)

Vfn € Fro(RE) fo(X):=< RE(n)

X U{A € A|Ais accessed in n}

n 1s forall
n s entry
otherwise

n 1s forall
n 18 exit
otherwise

Figure 8: Parameterized Propagation Functions

interface. The exit and forall statements have to lo-
calize only those arrays that were modified since the
globalize operation. These arrays can also be deter-
mined by a data flow problem, the Modified Shared
Arrays Problem (MSAP). MSAP is the problem of
determining, for each node, which arrays are shared
and may have been modified. MSAP isa TOPDOWN
problem and the node propagation function of forall-
loops adds shared arrays modified in that loop to the
current solution and excludes shared arrays localized
after the forall-loop. The code generation rules for
the exit statement and forall statements can now be
modified according to the solution of MSAP.

3.4 Implementation

In the Vienna Fortran Compilation System data flow
problems are expressed in terms of monotone data
flow systems [9] and solved by a parameterized tool
that implements the basic iterative algorithm. The
tool is based on a bitvector representation of the
data flow information set and is parameterized by the
propagation function and the direction of the specific
problem.

Since REDAP and RQDAP can also be formulated
as monotone data flow systems the existing tool was
applied to solve both problems. The solutions RE
and RQ are expressed by bitvectors and the prop-
agation functions implemented as efficient bitvector
operations.

The shared memory implementation is based on
Unix System V shared segments. At start of a sub-
routine a shared segment is allocated and each pro-
cess maps the segment in its virtual address space.
The copies of distributed arrays are dynamically al-
located in the shared address space.

We use two different strategies to implement dy-
namic arrays in the generated source code. On
Paragon, pointer-based variables known from Cray

Fortran are supported by the Fortran compiler. The
code generated for a distributed array A(1:N) is
shown in Figure 9.

POINTER (PA,SA) ! Declaration of the shared
REAL SA(1:N) ! array

! SALLOC returns the start
! address of SA in the
! shared address space

! globalize(A)

PA—SALLOC(N)

DO i=1r
SA()=A(i-$b+1)
ENDDO

Figure 9: Code Generation for Shared Arrays

On the iPSC/2-Koan implementation dynamic ar-
rays are implemented by computing the offset of a
statically declared copy and the start address in the
global address space. Accesses to the shared copy are
linearized and the offset is added such that memory
locations in the shared address space are accessed.

The globalize and localize operations are imple-
mented as shown in Figure 9. Each process copies
its own part of the distributed array to the shared
copy and vice versa. Therefore, if the computation
in the forall-loop does provide locality most of the
referenced pages will be local.

Reduction operations in forall-loops are imple-
mented via a distributed algorithm if replicated vari-
ables are computed. Each process computes the re-
duction for its local iterations and the results are com-
bined by the appropriate global message passing op-
erations. Reductions, computing array elements of
shared arrays, are implemented via appropriate syn-
chronization. On the Koan implementation we use
page locking and on the Paragon critical sections.

4 Comparison

The following example illustrates the properties of
both code generation techniques. We executed the
message passing and the SVM code on the Koan sys-
tem, an SVM implementation on an iPSC2 at IRISA
in France.

INTEGER a(40000) DIST (BLOCK)
INTEGER b(40000) DIST (BLOCK)
INTEGER id(40000) DIST (BLOCK)

DO 100 iter=1,50

FORALL 20 1=2,20000-1
a(2xid(1))=b(2#id(i)-1)+b(2#id(i)+1)

20 CONTINUE

100 CONTINUE

END

Table 1 gives the execution times of the outermost
do-loop for three different program versions. In the
SVM code the globalize and localize operations are
executed at program start and at the end of the pro-
gram. In the non-optimized message passing ver-
sion the inspector is executed for each iteration of
the outer do-loop. Due to the memory requirements
of the Parti implementation the code could only be
executed on 16 processors. The performance of the
manually optimized message passing version is much
better since the inspector is executed only once. The
one-node version in all three cases is the sequential
code.

Although the example gives an idea of the relation
between both code generation techniques, a compar-
ison is difficult since the performance depends on a
large set of parameters, such as the page fault times,
the page size, the message passing performance, the
locality with respect to the pages, the size of the ar-
rays etc. Therefore, both code generation techniques
have to be carefully studied for real applications tak-

ing into account new compile-time and runtime opti-
mizations.

5 Conclusion

When compilingirregular code written in Vienna For-
tran for a distributed memory system that provides
somehow a global address space, two code generation
strategies are available: generation of message pass-
ing code based on the runtime analysis and genera-

nodes | SVM | non-opt. MP | opt. MP
1 4.8 4.8 4.8
2 6.2 * 16.3
4 3.5 * 7.0
8 2.3 * 3.2
16 1.6 50.2 1.5

Table 1: Time (in secs) for loop 100

tion of SVM code. We have discussed both compiling
techniques and presented first performance results.

In the future, we plan to optimize the SVM-based
code generation by exploiting advanced runtime fea-
tures, such as data prefetching and weak coherence.
In addition, we will extend the intraprocedural in-
terface optimization towards an interprocedural op-
timization to efficiently support applications where
distributed arrays are accessed in multiple subrou-
tines only in forall-loops.

We plan to evaluate the techniques in the near fu-
ture on the SVM implementation on Paragon, which
is based on OSF/1 shared segments, and on KSR.
On Paragon, two SVM implementations will be avail-
able, the Intel-supported kernel implementation and
an External Mach Server implementation developed
at the Technical University of Minchen. Both sup-
port the shared segment interface.

Currently, no similar approach towards a combi-
nation of message passing code generation and SVM
code generation for data-parallel languages is known
to the authors. Research related to the message pass-
ing code generation, especially its optimization, was
already discussed in Section 2.2.

References

[1] Applied Parallel Research, FORGE 90, Ver-
sion 8.0, User’s Guide, 1992

[2] G. Fox, S. Hiranadani, K. Kennedy, C. Koel-
bel, U. Kremer, C. Tseng, M. Wu, Fortran D

Language Specification, Rice University,
Technical Report COMP TR90-141, Decem-
ber 1990

[3] S. Hiranandani, K. Kennedy, C. Tseng,
Compiler Optimizations for Fortran D on
MIMD Distributed-Memory Machines, Pro-
ceedings of the Supercomputing Conference

1991, Albuquerque, 86-100, November 1991

[4]

[10]

M. Gerndt, Updating Distributed Variables
in Local Computations, Concurrency: Prac-
tice and Experience, Vol. 2(3), 171-193,
September 1990

K. Li, Shared Virtual Memory on Loosely
Coupled Multiprocessors, Ph.D. Disserta-
tion, Yale University 1986, Technical Report
YALEU/DCS/RR-492

HPFF, High Performance Fortran Language
Specification, High Performance Fortran Fo-
rum, May 1993, Version 1.0, Rice University
Houston Texas

H. Zima, P. Brezany, B. Chapman, P. Mehro-
tra, A. Schwald, Vienna Fortran - A lan-
guage Specification Version 1.1, University

of Vienna, ACPC-TR 92-4, March 1992

P. Brezany, K. Sanjari, Processing Vector
Subscripted Accesses to Arrays with Multi-
Dimensional Distributions, Internal Res.
Rep., Inst. for Soft. Technology and Paral-
lel Systems, University of Vienna, November

1993.

H.P. Zima, B. Chapman, Supercompilers for
Parallel and Vector Computers, Addison-
Wesley, New York, 1990

S. Benkner, P. Brezany, H.P. Zima, Process-
ing Array Statements and Procedure Inter-
faces in the Prepare HPF Compiler. To ap-
pear in the Proc. of the Compiler Construc-

tion Conf., Edinburgh, April 1994.

S. Benkner, P. Brezany, K. Sanjari, V. Sip-
kova, Processing Vector Subscripted Accesses
to Arrays with Multi-Dimensional Distribu-
tions, Internal Res. Rep., Inst. for Soft. Tech-
nology and Parallel Systems, University of
Vienna, December 1993

R. Das, J. Saltz, A manual for Parti runtime
primitives - revision 2, Internal Research Re-
port, University of Maryland, 1992

G.Fox, S.Hiranadani, K.Kennedy, C.Koel-
bel, U.Kremer, C.Tseng, M.Wu, Fortran
D Language Specification, Rice University,
Technical Report COMP TR90-141, Dezem-
ber 1990

10

[14]

[17]

[18]

R. von Hanxleden, K. Kennedy, C. Koel-
bel, R. Das, and J. Saltz, Compiler Analy-
sis for Irregular Problems in Fortran D, Pro-
ceedings of the Third Workshop on Compil-
ers for Parallel Computers, Vienna, Austria,

July 1992

S.Hiranandani, K.Kennedy, C.Tseng, Com-
piler Optimizations for Fortran D on MIMD
Distributed-Memory Machines, Proceedings
of the Supercomputing Conference 1991, Al-
buquerque, 86-100, Nov. 1991

C. Koelbel, Compiling Programs for Non-
shared Memory Machines, Ph.D. Disserta-
tion, Purdue University, West Lafayette, IN,
November 1990.

R. Ponnusany, J. Saltz, A. Choudhary,
Runtime-Compilation Techniques for Data
Partitioning and Communication Schedule
Reuse, CS-TR-93-32, University of Mary-
land, College Park, MD, April 1993

J. Saltz, K. Crowley, R. Mirchandaney, and
H. Berryman, Run-time scheduling and exe-
cution of loops on message passing machines,

Journal of Parallel and Distributed Comput-
ing, 8(2):303-312, 1990

M. Weiser, Program Slicing, IEEE Transac-
tions on Softw. Eng., Vol. 10, No. 4, July
1984, 352-357

H. Zima, P. Brezany, B. Chapman, P. Mehro-
tra, A. Schwald, Vienna Fortran - A lan-
guage Specification Version 1.1, University

of Vienna, ACPC-TR 92-4, March 1992

