
FORSCHUNGSZENTRUM J �ULICH GmbH
Zentralinstitut f �ur Angewandte Mathematik

D-52425 J�ulich, Tel. (02461) 61-6402

Interner Bericht

SVM Support in the
Vienna Fortran Compiling System

Peter Brezany*, Michael Gerndt, Viera Sipkova*

KFA-ZAM-IB-9401

Januar 1994
(Stand 27.01.94)

(*) Department of Statistics and Computer Science, University of Vienna

SVM Support in the Vienna Fortran Compilation System �Peter BrezanyUniversity of Viennabrezany@par.univie.ac.at Michael GerndtResearch Centre J�ulich(KFA)m.gerndt@kfa-juelich.de Viera SipkovaUniversity of Viennasipka@par.univie.ac.atJanuary 27, 1994AbstractVienna Fortran, a machine-independent language ex-tension to Fortran which allows the user to write pro-grams for distributed-memory systems using globaladdresses, provides the forall-loop construct for spec-ifying irregular computations that do not cause inter-iteration dependences. Compilers for distributed-memory systems generate code that is based on run-time analysis techniques and is only e�cient if, inaddition, aggressive compile-time optimizations areapplied. Since these optimizations are di�cult toperform we propose to generate shared virtual mem-ory code instead that can bene�t from appropriateoperating system or hardware support. This pa-per presents the shared virtual memory code gener-ation, compares both approaches and gives �rst per-formance results.Keywords: distributed-memory systems, sharedvirtual memory systems, compile-time optimization,runtime analysis, Fortran language extensions1 IntroductionMassively parallel computers (MPP) o�er an im-mense peak performance. Current architectures con-sist of hundreds of nodes with physically distributedmemory and are either pure distributed memory sys-tems (Paragon), hardware-supported shared memorysystems (KSR,Cray T3D), or software-based sharedvirtual memory machines (IVY, iPSC2/Koan).Shared virtual memory (SVM) machines provide aglobal address space on top of physically distributed�The work described in this paper was carried out as partof the ESPRIT 3 project \Performance-Critical Applicationsof Parallel Architectures (APPARC)", the P2702 ESPRIT re-search project \An Automatic Parallelization System for Gen-esis" funded by the AustrianMinistry for Science and Research(BMWF), and the research project "High-level ProgrammingSupport for Parallel Systems" funded by the Austrian ScienceFoundation (FWF).

memory via an extension of the virtual memory pag-ing mechanism [5]. Page faults on one processor areserved by another processor which currently has thepage of the global address space in its private mem-ory. On such systems message passing and sharedmemory are both available for data exchange amongprocessors.The two main challenging problems of MPP sys-tems are to increase the sustained performance ofreal applications on such systems by hardware andsoftware enhancements and to develop programmingmodels and tools making programming of these ma-chines easier.Recently, High Performance Fortran (HPF) was de-veloped based on Vienna Fortran [20] and Fortran D[13] with the goal to ease programming MPP sys-tems for data parallel applications. The current ver-sion supports regular grid-based applications via datapartitioning annotations. Algorithms for the compi-lation of such a programming model have been de-veloped and implemented in some research tools andproducts, e.g. Superb [4], Fortran D environment[15], xHPF [1].Current research is going into an extension of HPFsupporting irregular computations. Vienna Fortranand Fortran D provide language constructs, such asirregular distribution formats and parallel loops withwork distribution speci�cation. Both projects areworking on the message passing implementation ofthese constructs. The implementation has to per-form aggressive compile-time optimizations to reducethe storage and runtime overhead. These optimiza-tions are di�cult to perform for applications wherethe problem structure depends on runtime data or isdynamic.The goal of the work described in this paper is tostudy the compilation of Vienna Fortran for SVMmachines exploiting the strength of both concepts,message passing and shared memory communication.Language extensions for regular grid-based applica-tions are still translated into message passing code1

since the compiler can generate e�cient code basedon compile-time information. The compiler is ableto translate language features for irregular compu-tations into both, message passing code and sharedvirtual memory code. Shared memory code genera-tion facilitates compile-time optimizations, implicitlyexploits locality due to page migration among proces-sors, and can use runtime optimizations such as dataprefetching. Our long term goal is to �nd criteria forthe selection of the better code generation strategyfor a given input code fragment.Section 2.1 presents the Vienna Fortran languageextensions. The basic message passing compilationscheme is introduced and evaluated in Section 2.2.In Section 2.3 we present the basic SVM compilationand Section 3 describes the algorithm used to opti-mize the interface among message passing and SVMcode generation. Section 4 gives some �rst perfor-mance comparisons.2 Code Generation for Irregu-lar Data-Parallel Loops2.1 Forall LoopsVienna Fortran supports explicitly parallel loopscalled FORALL1-loops which are mainly used forspeci�cation of irregular computations. A precondi-tion for the correctness of this loop is the absence ofloop-carried dependences except accumulation typedependences.The general form of the forall-loop is as follows:FORALL (I1= ~sec1, ... , In= ~secn) [work distr spec]forall-bodyEND FORALLwhere for 1 � j � n, Ij are index names and~secj are subscript triplets of the form lj ; uj; sj whichmust not contain references to any index name. Ifthe value of sj equals one, sj can be omitted. If jequals one, the header parenthesis can also be leftout. work distr spec denotes an optional work distri-bution speci�cation.The iterations of the loop may be assigned explic-itly to processors by work distribution annotations,i.e. an optional on-clause speci�ed in the forall-loopheader.1Note that the forall-loop, as introduced here, is not theforall-loop proposed during the development of Fortran 90 andin HPF.

FORALL i = 1,N ON OWNER(C(K(i)))Y(K(i))=X(K(i))+C(K(i))*Z(K(i))END FORALL(a) Parallel loop with indirect accessesFORALL i = 1, N ON P1D(NOP(i))REAL T: : :REDUCE (ADD , X, A(Y(i))): : :END FORALL(b) Summing values of a distributed arrayFORALL i = 1, N: : :REDUCE (ADD , B(X(i)), D(Y(i))*E(Z(i))): : :END FORALL(c) Accumulating values onto a distributed arrayFigure 1: Parallel loops.The on-clause in the example shown in Figure 1(a) speci�es that the i-th iteration (1 � i � N) ofthe loop is executed on the processor which ownsC(K(i)). In the second parallel loop (Figure 1(b))the on-clause directly refers to the processor arrayP1D. The ith iteration is assigned to the kth proces-sor where k is the current value of the array elementwhich is denoted by NOP(i). T is declared private inthis forall loop. Logically, there are N copies of thevariable T , one for each iteration of the loop. Assign-ments to private variables do not cause loop-carrieddependences.A reduction statement may be used within forall-loops to perform global operations, such as globalsums; the result is not available until the end of theloop. The forall-loop in Figure 1(b) computes thesum of some of the array elements of A and places theresult in variableX. In each iteration of the forall-loopin Figure 1(c), elements of D and E are multiplied,and the result is used to increment the correspondingelement of B. In general, all arrays B, D, E, X, Y,and Z can be distributed. In this example the userpresumes the compiler will automatically derive thework distribution.Moreover, the language enables the user to specifyBlock or Cyclic work distribution strategy.2

2.2 Message Passing Code GenerationThe strategy used generates two code phases forforall-loops, known as the inspector and the execu-tor [16, 18]. They both are supported by the run-time libraries [11, 12] 2. The inspector analyzes thecommunication patterns of the loop, computes thedescription of the communication, and derives trans-lation functions between global and local accesses,while the executor performs the actual communica-tion and executes the loop iterations.The inspector consists of three steps. The �rst stepperforms the construction of translation tables forirregularly distributed arrays3 occurring in a forall-loop. The translation table is constructed from themapping array, recording the owner of each datumand its local index. To economize storage, one trans-lation table is constructed for all arrays with the sameshape and the same distribution.The second step computes the execution setexec(p), i.e. the set of loop iterations to be executedon processor p . The work distribution speci�cation,if introduced, determines the execution set. For theexample in Figure 1(a), the execution set is given by:exec(p) = fi j K(i) 2 localC (p) ^ 1 � i � Ngwhere localC (p) denotes the set of indices of elementsof array C that are stored on processor p.The third step performs a dynamic loop analysis.Its task is to describe necessary communication by aset of so called schedules that control runtime pro-cedures moving data between processors in the sub-sequent executor phase. The dynamic loop analysisalso establishes an appropriate addressing scheme toaccess local elements and copies of non-local elementson each processor.Information needed to generate a schedule, to al-locate a bu�er, and for the global to local indexconversion for a given distributed array referenceA(f(i)) can be produced from the global reference listglobal refA(p), along with the knowledge of the dis-tribution of A. The global reference list is computedfrom the subscript function f(i) and from exec(p).To build global refA(p), the forall-body is partiallyinterpreted. The slicing ([19]) of the forall-body re-duces the code duplication to the level needed to eval-uate f(i). Let V be the set of all variable referencesoccuring in f(i). The slice of the forall-body with re-spect to statement S and the variable references in V2The Parti library [12] has been the �rst system constructedto support the handling of irregular computations. On top ofthe Parti an extended library [11] is being built to support allVienna Fortran and HPF distributions and alignments.3In this case, array elements are arbitrarily assigned to pro-cessors as it is speci�ed by a mapping array.

consists of all statements and predicates of the forall-body that might a�ect the values of elements of Vin statement S. However, some temporary variablesmust be allocated to avoid overwriting live data. Af-ter introducing these temporary variables, the refer-ence A(f(i)), originally occuring in S, is transformedinto A(f 0(i)) in the slice. f 0(i) results from f(i) bysubstituting some original variables with temporaryvariables. Figure 2 shows a scheme for computingglobal refA(p). In this �gure, the function value com-putes the value of f 0(i), nil denotes the empty list,and append appends an item to the end of the list.global refA (p) = nilforeach i 2 exec(p) do� � � slice execution � � �global refA(p) = global refA(p) append value(f 0(i))end foreachFigure 2: Computation of global refA(p).The list global refA(p) and the distribution of Aare used to determine the communication pattern, i.e.a schedule, the size of the communication bu�er to beallocated, and the local reference list local refA(p)which contains results of global to local index con-version. The declaration of array A in the messagepassing code allocates memory for the local segmentholding the local data of A and the communicationbu�er storing copies of non-local data. The bu�eris appended to the local segment. An element fromlocal refA(p) refers either to the local segment ofA orto the bu�er. A local index in local refA(p) is derivedfrom the corresponding element of global refA(p).The executor is the second phase in the execu-tion of the forall-loop; it performs communication de-scribed by schedulers, and performs the actual com-putations for all iterations from exec(p). In general,no synchronization at the beginning and the end ofthe loop is needed. The schedulers control communi-cation in such a way that execution of the loop usingthe local reference list accesses the correct data inlocal segments and bu�ers. Non-local data neededfor the computation on processor p is gathered fromother processors by the runtime communication pro-cedure Gather. It accepts a schedule, an address ofthe local segment, and an address of the bu�er asinput parameters. On the other hand, the non-localdata computed on processor p are moved by the pro-cedure Scatter into their permanent addresses.Several experiments demonstrated that the abovetechniques can be used for dealing e�ectively with3

some typical irregular computations. However, somedi�culties can occur when attempting to adapt anirregular code for a distributed-memory system.In the case, when an indirect indexed array A oc-curing in the forall loop is aligned with an array Bsuch that array element A(i) is aligned to array el-ement B(k � i + o) and array B is distributed usinga CY CLIC(M) distribution, the global to local in-dex conversion is very costly. It has to be computedelement-wise, using techniques introduced in [10], forexample. This computation can be also done via atable. However, the translation table generated foran array with n elements contains 2 � n items and,therefore, it is distributed as well and communica-tion is potentially needed to get some informationfrom the table.Extents of execution sets, lengths of global refer-ence and local reference sets and sizes of communi-cation bu�ers are unknown at compile time. In thestandard Fortran 77 environment, shapes of arraysthat implement the above concepts must be overesti-mated to guarantee the safe computation as much aspossible. Therefore processors can quickly run out ofmemory space.Generation of schedules can also cause high run-time overhead. There are a variety of situations inwhich the same data need to be accessed by multi-ple loops. The runtime support makes it possible toreuse non-local data copies by generating incremen-tal schedules that include only non-local data accessesnot included in the preexisting schedules. The pro-gram analysis has to determine when it is safe to useincremental schedules and reuse the schedules gener-ated. The data
ow framework described in [14] aimsat providing information about which data are neededat which points in the code, along with informationabout which live non-local data are available. How-ever, it only considers the intraprocedural level and itworks under many simpli�ed assumptions. A simpleconservative runtime method is proposed in [17] thatallows to reuse the results from inspectors in manycases. In this method a record is maintained whethera distributed array is modi�ed. In such a case, val-ues have to be exchanged again. When using thismethod, the compiler generates code that at runtimemaintains a record of when a forall-loop may havewritten to a distributed array. However, there is ahigh runtime overhead in some cases.2.3 SVM Code GenerationMessage passing code generated for forall-loops withirregular accesses has to compute remote accesses

precisely at runtime. In SVM systems instead, datamovement is implicit when a process references a da-tum in the global address space also called sharedmemory. The Vienna Fortran Compilation Systemtherefore translates forall-loops for SVM systems ina di�erent way. Distributed arrays accessed in theforall loop are copied to the global address space suchthat references are resolved automatically. When ref-erencing a variable that is not available in the phys-ical memory of the processor, the appropriate pageor cache line is automatically transferred to that pro-cessor.Phase 1: Work DistributionCompute exec(p).Phase 2: Array GlobalizationCopy the local part of distributedarrays read or written in the forall-loopto the shared memory.Phase 3: Execute Local IterationsExecute the iterations in exec(p).Phase 4: Array LocalizationCopy local parts of modi�ed arraysback to process private memory.Figure 3: SVM CodeThe code generated for individual forall-loops isoutlined in Figure 3. The �rst phase computes theexecution set according to the speci�ed work distribu-tion. This phase is implemented in the same way as inthe message passing version. The second phase copiesthe distributed arrays accessed in the forall-loops tothe global address space (array globalization). Thethird phase executes the iterations in the local exe-cution set, and in the last phase the modi�ed arraysare copied back to the process's private memories (ar-ray localization). Global synchronizations have to beperformed after phase 2, to ensure that no processaccesses a datum in the global address space beforeit is initialized, and prior to phase 4, to ensure thatall assignments have been performed before data arecopied back. The forall-loop is thus translated in aclassical parallel loop with a pre-phase of globalizeoperations and a following phase of localize opera-tions.The amount of shared memory needed for dis-tributed arrays accessed in the forall-loops of a unitis dynamically allocated at the start of the programunit and deallocated at the end. For each such dis-tributed array a new array is declared with the origi-4

nal shape. The new arrays are allocated dynamicallyin the shared memory segment (cf. Section 3.4).3 SVM Code OptimizationThe main drawback of this code generation schemeis that the globalize and localize operations are per-formed for each forall-loop although in a sequence offorall-loops only the �rst has to globalize an arrayand the last loop has to localize it again. In addition,if no globalization has to be performed the synchro-nization before the loop can be eliminated.Therefore, we designed and implemented an opti-mization that eliminates redundant globalize and lo-calize operations. The optimization is based on theassumption that globalize and localize operations canonly be performed at the start and end of the unitand before and after each forall-loop. We do not allowsuch operations to be inserted arbitrarily.The overall algorithm consists of a top-down and abottom-up phase that are repeated until no changesoccur. Each phase solves a data
ow problem whichdepends on the results of the previous phase. Thetop-down problem is called the reaching distributedarrays problem (REDAP) and the bottom-up prob-lem is the required distributed arrays problem (RQ-DAP). The result of this optimization is the informa-tion which arrays have to be globalized at the start ofthe unit, which arrays have to be localized at the end,and which arrays have to be globalized or localizedfor individual forall-loops.Both problems, REDAP and RQDAP, can be de-scribed using the following notation:� G(N ,E ,entry,exit) is the program graph where Nis the set of nodes representing the statements, Ethe set of arcs, entry the �rst statement, and exitthe last statement. In the program graph entireforall-loops are condensed to a single node.� A is the set of arrays distributed via languageannotations and accessed in a forall-loop.� L=P(A) is the data
ow information set.� SH: N ! L is a function that de�nes for eachforall-loop the set of accessed arrays from A .These arrays are shared in the SVM implemen-tation.� TOPDOWN, BOTTOMUP is the direction ofthe data
ow problem, which de�nes whether thee�ect of joining paths at a node is the union ofthe predecessors or the successors.

entry

forall

forall forall

forall

exit

n
1

n2

n3

n4

n5

n6

n7

globalize(B)

globalize(A)

localize(A)

localize(B)

A(...) = ...

SH()={B}

SH()={B} SH()={A}

SH()={A}

2 n

3n 5n

6nFigure 4: Program Graph� F is the set of functions on L that includes foreach node n a function fn: L ! L describing thee�ect of that node on the data
ow information.The example shown in Figure 4 illustrates the def-initions. The localization of B after n2 and its glob-alization prior to n3 resulting from the basic imple-mentation are redundant. The same is true for Abetween n5 and n6. The assignment to A in node n4requires that A is distributed when the statement isexecuted. The �nal localize and globalize operationsresulting from our optimization are presented in the�gure. After the following description of the opti-mization algorithms we explain how this �nal resultis obtained.3.1 Reaching Distributed ArraysThe REDAP is the problem of determining, for eachnode, all arrays in A that may be distributed whenthe statement is executed. The solution is describedby a function RE: N ! L. REDAP is a top-downproblem.5

(a) fn(X) := 8<: (X n SH(n)) [fA 2 AjA is localizedg n is forallfA 2 AjA is not globalizedg n is entryX otherwise(b) fn(X) :=8<: (X n SH(n)) [fA 2 AjA is globalizedg n is forallfA 2 AjA is not localizedg n is exitX [fA 2 AjA is accessed in ng otherwiseFigure 5: Propagation Functions of REDAP and RQDAPThe propagation functions in FRE are de�ned inFigure 5(a). An array accessed in a forall is sharedafter the loop if it is not explicitly localized after theforall, independent of whether it was distributed priorto the forall. An array is distributed after the entrystatement if it is not explicitly globalized by the en-try statement since we require that arrays in A aredistributed at start of the unit.3.2 Required Distributed ArraysThe RQDAP is the problem of determining, for eachnode, all arrays that have to be distributed after thestatement was executed. The solution is describedby the function RQ: N!L. RQDAP is a bottom-upproblem.The propagation functions in FRQ are de�ned inFigure 5(b). If an array is globalized by a forall thisarray has to be distributed whenever the forall is ex-ecuted. An array that is accessed in a forall but notglobalized need not be distributed when the forall isexecuted independent of whether it has to be dis-tributed after the forall.An array has to be distributed when the exit nodeis executed if it is not localized by the exit node be-cause all arrays have to be distributed when the unitis �nished.Each array accessed in another statement, i.e. out-side of forall-loops, has to be distributed when thestatement is executed.3.3 Optimization AlgorithmBoth data
ow problems are solved with the basiciterative algorithm shown in Figure 6.The calls�nd solution(G,FRE,RE,TOPDOWN,entry)�nd solution(G,FRQ,RQ,BOTTOMUP,exit)

�nd solution(G,F,x,direction,s)stable=falsewhile (not stable) dostable=trueforeach n 2 Nnfsg doif (direction=TOPDOWN) thennew = [n02 pred(n) fn0 (x(n0))else new = [n02 succ(n) fn0 (x(n0))endifif (new6=x(n)) thenx(n)=newstable=falseendifend foreachend whileendFigure 6: Iterative Solver for REDAP and RQDAPwith the initializations8n 2 N RE(n) = RQ(n) = ;solve REDAP and RQDAP respectively.The optimized interface among message passingcode generation and SVM code generation can nowbe described as the pair of functions RE and RQ.The code generation will then generate localize andglobalize operations according to the following rules:entry statement8A 2 A nRQ(entry) globalize(A)6

exit statement8A 2 A nRE(exit) localize(A)forall statement8A 2 SH(forall) \RE(forall) globalize(A)8A 2 SH(forall) \RQ(forall) localize(A)The computation of the optimized interface is per-formed by the procedure shown in Figure 7.compute interface(G,RE,RQ)8 n 2 N RE(n) = RQ(n) = ;stable=falsewhile (not stable) dostable=true�nd solution(G, FRQ(RE),RQ,BOTTOMUP,exit)x=RE�nd solution(G, FRE(RQ),x,TOPDOWN,entry)if (x6=RE) thenRE=xstable=falseendifend whileend Figure 7: Interface OptimizerThe algorithm iteratively solves RQDAP andREDAP until RE is no longer changed. In each it-eration the current solution, RE and RQ, determinesthe propagation functions of the nodes in the nextproblem according to the rules described above.For example, if a statement following a forall-looprequires that an array is distributed and that arrayis accessed in the forall loop and thus is copied toshared memory, a localization has to be performedafter the loop. The solution of RQDAP determinesthat the localization has to be done and this localizeoperation has to be taken into account when REDAPis solved afterwards.Therefore, the propagation functions of REDAPand RQDAP have to be parameterized according tothe current solution RE and RQ. The parameterizedpropagation functions are de�ned in Figure 8.The algorithm starts with the assumption that allarrays accessed in any forall-loop are globalized at thebeginning and keeps them shared as long as possible.We use the example program graph in Figure4 to illustrate the algorithm. First, RQDAP issolved. Here the only requirement is that A

has to be distributed in n4. This is propagatedin the program graph. The solution of RQDAPis: RQ(n1)= RQ(n2)= RQ(n3)=fAg and RQ(n4)=RQ(n5)= RQ(n6)= RQ(n7)= ;.Now, REDAP is solved taking RQ into account.Since RQ(n1)=fAg A is not globalized by the en-try statement. The solution of this step is RE(n2)=RE(n3)= RE(n4)= RE(n5)= RE(n7)=fAg. Sinceboth solutions of REDAP and RQDAP were changedanother iteration has to be performed. This itera-tion is necessary because the current solution is in-correct. The exit statement will not localize A sinceRE(exit)=fAg. But A is only distributed if the con-trol
ow goes through n3 and not through n5. Thenext computation of RQDAP now propagates the in-formation that A has to be distributed to n6. In the�nal solution RE is unchanged and RQ(n5)= ; andfor all other nodes RQ(n)= fAg.The convergence of the interface optimization al-gorithm results from the proof in [9] for monotonedata
ow systems and the following properties of thealgorithm:� (L,[) is a bounded semilattice,� the propagation functions of the parameterizedproblems REDAP and RQDAP are distributivefunctions on L, and� 8n 2 N; x 2 L : fn(x) � f 0n(x)where either fn 2 FnextRQ ; f 0n 2 FRQor fn 2 FnextRE ; f 0n 2 FREandFnext is the set of propagation functions in thenext iteration of the while-loop incompute interface.Due to these properties the solutions RE(n) andRQ(n) for each node n in each iteration in com-pute interface include at least those arrays that wereincluded in the previous iteration. Since the numberof arrays in A is �xed the algorithm will terminate.In the basic interface (Figure 3) only the modi�edshared arrays are localized after a forall-loop. A sim-ilar optimization can also be applied to the optimized7

8fn 2 FRE(RQ) fn(X) := 8<: (X n SH(n)) [RQ(n) n is forallRQ(n) n is entryX otherwise8fn 2 FRQ(RE) fn(X) := 8<: (X n SH(n)) [RE(n) n is forallRE(n) n is exitX [fA 2 AjA is accessed in ng otherwiseFigure 8: Parameterized Propagation Functionsinterface. The exit and forall statements have to lo-calize only those arrays that were modi�ed since theglobalize operation. These arrays can also be deter-mined by a data
ow problem, the Modi�ed SharedArrays Problem (MSAP). MSAP is the problem ofdetermining, for each node, which arrays are sharedand may have been modi�ed. MSAP is a TOPDOWNproblem and the node propagation function of forall-loops adds shared arrays modi�ed in that loop to thecurrent solution and excludes shared arrays localizedafter the forall-loop. The code generation rules forthe exit statement and forall statements can now bemodi�ed according to the solution of MSAP.3.4 ImplementationIn the Vienna Fortran Compilation System data
owproblems are expressed in terms of monotone data
ow systems [9] and solved by a parameterized toolthat implements the basic iterative algorithm. Thetool is based on a bitvector representation of thedata
ow information set and is parameterized by thepropagation function and the direction of the speci�cproblem.Since REDAP and RQDAP can also be formulatedas monotone data
ow systems the existing tool wasapplied to solve both problems. The solutions REand RQ are expressed by bitvectors and the prop-agation functions implemented as e�cient bitvectoroperations.The shared memory implementation is based onUnix System V shared segments. At start of a sub-routine a shared segment is allocated and each pro-cess maps the segment in its virtual address space.The copies of distributed arrays are dynamically al-located in the shared address space.We use two di�erent strategies to implement dy-namic arrays in the generated source code. OnParagon, pointer-based variables known from Cray

Fortran are supported by the Fortran compiler. Thecode generated for a distributed array A(1:N) isshown in Figure 9.POINTER (PA,SA) ! Declaration of the sharedREAL SA(1:N) ! array. . .PA=SALLOC(N) ! SALLOC returns the start! address of SA in the. . . ! shared address spaceDO i=$l,$r ! globalize(A)SA(i)=A(i-$lb+1)ENDDOFigure 9: Code Generation for Shared ArraysOn the iPSC/2-Koan implementation dynamic ar-rays are implemented by computing the o�set of astatically declared copy and the start address in theglobal address space. Accesses to the shared copy arelinearized and the o�set is added such that memorylocations in the shared address space are accessed.The globalize and localize operations are imple-mented as shown in Figure 9. Each process copiesits own part of the distributed array to the sharedcopy and vice versa. Therefore, if the computationin the forall-loop does provide locality most of thereferenced pages will be local.Reduction operations in forall-loops are imple-mented via a distributed algorithm if replicated vari-ables are computed. Each process computes the re-duction for its local iterations and the results are com-bined by the appropriate global message passing op-erations. Reductions, computing array elements ofshared arrays, are implemented via appropriate syn-chronization. On the Koan implementation we usepage locking and on the Paragon critical sections.8

4 ComparisonThe following example illustrates the properties ofboth code generation techniques. We executed themessage passing and the SVM code on the Koan sys-tem, an SVM implementation on an iPSC2 at IRISAin France.INTEGER a(40000) DIST (BLOCK)INTEGER b(40000) DIST (BLOCK)INTEGER id(40000) DIST (BLOCK)...DO 100 iter=1,50...FORALL 20 i=2,20000-1a(2�id(i))=b(2�id(i)-1)+b(2�id(i)+1)20 CONTINUE100 CONTINUE...ENDTable 1 gives the execution times of the outermostdo-loop for three di�erent program versions. In theSVM code the globalize and localize operations areexecuted at program start and at the end of the pro-gram. In the non-optimized message passing ver-sion the inspector is executed for each iteration ofthe outer do-loop. Due to the memory requirementsof the Parti implementation the code could only beexecuted on 16 processors. The performance of themanually optimized message passing version is muchbetter since the inspector is executed only once. Theone-node version in all three cases is the sequentialcode.Although the example gives an idea of the relationbetween both code generation techniques, a compar-ison is di�cult since the performance depends on alarge set of parameters, such as the page fault times,the page size, the message passing performance, thelocality with respect to the pages, the size of the ar-rays etc. Therefore, both code generation techniqueshave to be carefully studied for real applications tak-ing into account new compile-time and runtime opti-mizations.5 ConclusionWhen compiling irregular code written in Vienna For-tran for a distributed memory system that providessomehow a global address space, two code generationstrategies are available: generation of message pass-ing code based on the runtime analysis and genera-

nodes SVM non-opt. MP opt. MP1 4.8 4.8 4.82 6.2 � 16.34 3.5 � 7.08 2.3 � 3.216 1.6 50.2 1.5Table 1: Time (in secs) for loop 100tion of SVM code. We have discussed both compilingtechniques and presented �rst performance results.In the future, we plan to optimize the SVM-basedcode generation by exploiting advanced runtime fea-tures, such as data prefetching and weak coherence.In addition, we will extend the intraprocedural in-terface optimization towards an interprocedural op-timization to e�ciently support applications wheredistributed arrays are accessed in multiple subrou-tines only in forall-loops.We plan to evaluate the techniques in the near fu-ture on the SVM implementation on Paragon, whichis based on OSF/1 shared segments, and on KSR.On Paragon, two SVM implementations will be avail-able, the Intel-supported kernel implementation andan External Mach Server implementation developedat the Technical University of M�unchen. Both sup-port the shared segment interface.Currently, no similar approach towards a combi-nation of message passing code generation and SVMcode generation for data-parallel languages is knownto the authors. Research related to the message pass-ing code generation, especially its optimization, wasalready discussed in Section 2.2.References[1] Applied Parallel Research, FORGE 90, Ver-sion 8.0, User's Guide, 1992[2] G. Fox, S. Hiranadani, K. Kennedy, C. Koel-bel, U. Kremer, C. Tseng, M. Wu, Fortran DLanguage Speci�cation, Rice University,Technical Report COMP TR90-141, Decem-ber 1990[3] S. Hiranandani, K. Kennedy, C. Tseng,Compiler Optimizations for Fortran D onMIMD Distributed-Memory Machines, Pro-ceedings of the Supercomputing Conference1991, Albuquerque, 86-100, November 19919

[4] M. Gerndt, Updating Distributed Variablesin Local Computations, Concurrency: Prac-tice and Experience, Vol. 2(3), 171-193,September 1990[5] K. Li, Shared Virtual Memory on LooselyCoupled Multiprocessors, Ph.D. Disserta-tion, Yale University 1986, Technical ReportYALEU/DCS/RR-492[6] HPFF, High Performance Fortran LanguageSpeci�cation, High Performance Fortran Fo-rum, May 1993, Version 1.0, Rice UniversityHouston Texas[7] H. Zima, P. Brezany, B. Chapman, P. Mehro-tra, A. Schwald, Vienna Fortran - A lan-guage Speci�cation Version 1.1, Universityof Vienna, ACPC-TR 92-4, March 1992[8] P. Brezany, K. Sanjari, Processing VectorSubscripted Accesses to Arrays with Multi-Dimensional Distributions, Internal Res.Rep., Inst. for Soft. Technology and Paral-lel Systems, University of Vienna, November1993.[9] H.P. Zima, B. Chapman, Supercompilers forParallel and Vector Computers, Addison-Wesley, New York, 1990[10] S. Benkner, P. Brezany, H.P. Zima, Process-ing Array Statements and Procedure Inter-faces in the Prepare HPF Compiler. To ap-pear in the Proc. of the Compiler Construc-tion Conf., Edinburgh, April 1994.[11] S. Benkner, P. Brezany, K. Sanjari, V. Sip-kova,Processing Vector Subscripted Accessesto Arrays with Multi-Dimensional Distribu-tions, Internal Res. Rep., Inst. for Soft. Tech-nology and Parallel Systems, University ofVienna, December 1993[12] R. Das, J. Saltz,A manual for Parti runtimeprimitives - revision 2, Internal Research Re-port, University of Maryland, 1992[13] G.Fox, S.Hiranadani, K.Kennedy, C.Koel-bel, U.Kremer, C.Tseng, M.Wu, FortranD Language Speci�cation, Rice University,Technical Report COMP TR90-141, Dezem-ber 1990

[14] R. von Hanxleden, K. Kennedy, C. Koel-bel, R. Das, and J. Saltz, Compiler Analy-sis for Irregular Problems in Fortran D, Pro-ceedings of the Third Workshop on Compil-ers for Parallel Computers, Vienna, Austria,July 1992[15] S.Hiranandani, K.Kennedy, C.Tseng, Com-piler Optimizations for Fortran D on MIMDDistributed-Memory Machines, Proceedingsof the Supercomputing Conference 1991, Al-buquerque, 86-100, Nov. 1991[16] C. Koelbel, Compiling Programs for Non-shared Memory Machines, Ph.D. Disserta-tion, Purdue University, West Lafayette, IN,November 1990.[17] R. Ponnusany, J. Saltz, A. Choudhary,Runtime-Compilation Techniques for DataPartitioning and Communication ScheduleReuse, CS-TR-93-32, University of Mary-land, College Park, MD, April 1993[18] J. Saltz, K. Crowley, R. Mirchandaney, andH. Berryman, Run-time scheduling and exe-cution of loops on message passing machines,Journal of Parallel and Distributed Comput-ing, 8(2):303{312, 1990[19] M. Weiser, Program Slicing, IEEE Transac-tions on Softw. Eng., Vol. 10, No. 4, July1984, 352{357[20] H. Zima, P. Brezany, B. Chapman, P. Mehro-tra, A. Schwald, Vienna Fortran - A lan-guage Speci�cation Version 1.1, Universityof Vienna, ACPC-TR 92-4, March 1992
10

