
FORSCHUNGSZENTRUM J�ULICH GmbH
Zentralinstitut f�ur Angewandte Mathematik

D-52425 J�ulich, Tel. (02461) 61-6402

Interner Bericht

TOP2 — Tool for Partial Parallelization

Version 3.01

User’s Guide

Ulrich Detert, Michael Gerndt

KFA-ZAM-IB-9418

August 1994

(Stand 23.08.94)

TOP2 - Tool Suite for Partial ParallelizationVersion 3.01User's GuideUlrich Detert, Michael GerndtForschungszentrum J�ulich GmbHZentralinstitut f�ur Angewandte MathematikPostfach 1913, D-52425 J�ulichAugust 23, 1994

Contents1 Introduction 12 Quick Start for Impatient Users 23 The TOP2 Annotator 53.1 Interactive functions : 53.2 Resources : 74 TOP2 Code Generator 74.1 Command Line Call : 74.2 Resources : 85 Source Code Directives 106 Details of Data Distribution 136.1 Mapping Logical Processor Arrays to Physical Processors : : : : : : : : : : 136.2 Mapping Array Elements to Logical Processors : : : : : : : : : : : : : : : : 147 Intrinsic Functions for Index Calculations on Distributed Arrays 157.1 Level-One Intrinsic Functions : 167.2 Level-Two Intrinsic Functions : 177.3 Example : 208 The TOP2 Generated Code 228.1 Code Structure : 238.2 Applying Changes to the Parallel Application : : : : : : : : : : : : : : : : : 269 Compilation and Execution of the Distributed Application 27ii

9.1 Compilation : 289.2 Execution : 289.3 Communication via Network : 299.4 Communication via NFS Files : 299.5 Rerunning the Parallel Program with Existing Data : : : : : : : : : : : : : 309.6 Debugging : 3010 Example 3110.1 Matrix Multiplication : 3110.2 Jakobi Solver for Poisson Equation : 3511 Limitations 3512 TOP2 Installation on Sun and Paragon 3613 Speci�c Considerations for the T3D Version in Eagan 3613.1 Installation : 3613.2 Resources : 3613.3 Files : 37
iii

1 IntroductionThe parallelization of existing sequential applications for distributed memory parallel sys-tems is often not a trivial task, as parallelization for this type of machines is by its naturenot a local operation.TOP2 is a tool suite that aids users of such parallel systems in porting existing sequentialapplications by supporting the separation of compute-intensive kernels of an applicationfrom the existing sequential code and providing a development environment for the par-allelization of these code segments. Thus, the parallelization of big applications can bebroken up into several smaller tasks that may, in a way, be regarded as local optimizationsteps. In this scenario, the sequential and the parallel code are run simultaneously as adistributed application on both systems and automatically exchange context data betweenboth components. Main features in this process are the provision of cross-domain messagepassing for the automatic distribution of program data from the sequential machine to thedistributed memory system and the ability of on-line debugging of the parallelized code.The input language of TOP2 is Fortran 77.The data distribution features of TOP2 are a subset of those de�ned in HPF Fortran andthus especially support algorithms on regular data structures exploiting data parallelism inthe context of SPMD programming. Logical processor arrays with up to seven dimensionsare the basic vehicle for data distribution speci�cations in this scenario. Fortran dataarrays may be distributed by distributing each array dimension onto the correspondingdimension of a processor array. The distribution scheme may be "block", "cyclic", or"replicate" (undistributed) in each dimension. The logical processor arrays are mappedonto the physical processing nodes of the target architecture which implicitely distributesthe data onto the nodes. Intrinsic functions for index calculations on distributed arraysare provided in order to facilitate the development of the parallel SPMD code.TOP2 consists of two major components, an interactive annotator and a code generator.The annotator supports the user in de�ning the proper context (input and output vari-ables) of the parallelizable program segment through interprocedural data
ow analysisand allows the de�nition of data distribution strategies. The interactive dialog of theannotator is based on the X Window System. The code generator creates source codefor the sequential and the parallel machine that re
ects the user-de�ned data distributionand contains all necessary functions to do the cross-domain message passing for input andoutput data (Figure 1).The annotator and the code generator implement two phases of TOP2. The informationexchange between these phases is realized by means of source code directives. The an-notator inserts the directives into the given sequential Fortran program according to itsdata
ow analysis and the user interaction. The code generator reads the directives andtakes them as a basis for the following code generation phase. As the two phases are onlyloosely coupled to each other, it is also possible to separate them and e.g. run the codegeneration phase several times, if changes to the source code directives have been mademanually.At present, two implementations of TOP2 exist:1

Interactive

Annotator
Fortran 77

Annotated

Fortran 77
Code Generator

Sequential

Program

Parallel

Skeleton

Code Generation

Execution

TOP 2

Parallel

Program

Network

NFSFigure 1: TOP2 Structure� At KFA Juelich, TOP2 is installed on a Sun workstation representing a typicalsequential machine and on an Intel Paragon distributed memory system. This is theimplementation that is referred to in the main part of this document.� A prototype implementation of TOP2 for a Cray T3D system exists at Cray ResearchInc. in Eagan/Minnesota. This implementation is referred to in section 13 of thisUser's Guide.In the current version of TOP2, two implementations of the cross-domain message passingexist that may be selected through an option. In the �rst implementation, data is directlypassed via network, using UNIX sockets for communication, in the second, NFS shared�les are used for data exchange. Both implementations provide essentially the same func-tionality, however, di�er in performance and portability. Details of the speci�c installationare described in the following.2 Quick Start for Impatient UsersTo use the current implementation of TOP2 on the Sun workstation cluster and theParagon system at KFA (zam127.zam.kfa-juelich.de and paragon.zam.kfa-juelich.de) ob-serve the following guidelines (deviations from this procedure related to the TOP2 imple-mentation for Cray T3D are described in section 13).1. Select an existing sequential application for parallelization on the Paragon System.Assure that it runs correctly on the Sun workstation and that all required input data2

and pre- and postprocessing procedures exist on the workstation.2. If possible, establish an NFS shared �le system between Sun and Paragon or usean existing one. Create a new directory (called working directory in the following)for your application in this �le system and make sure that it has read and writepermission on both machines. Make this directory the current directory on bothmachines for all following steps. (If it is not possible to use an NFS mounted �lesystem on both machines, use two distinct directories on Sun and Paragon. In thiscase, ftp will have to be used to transport the generated parallel code to the Paragon,and only the network version of the cross-domain message passing may be used fordata exchange.)3. Copy the source of your application into the working directory and, if necessary, alsoall data or library �les that are required for compilation and execution.4. Make sure that the environment variable TOP2HOME has already been set for you bythe system administrator or set it yourself to /usr/local/top2 on Sun and Paragon.5. From $TOP2HOME/resources copy the X Window resource �le Top2 into the workingdirectory (Sun only).6. Now execute TOP2 by typing top2 on the Sun command line to initiate the anno-tation and code generation phase. During the interaction with TOP2 execute thefollowing steps:(a) Use Read Program in the System submenu to read the source of your applica-tion.(b) Click Load Unit to select that program unit that forms the top procedure ofthe program segment that you are about to parallelize.(c) From the Annotation submenu select Distributions to determine and possi-bly correct or optimize the set of input and output variables. To move a variablefrom one list to another click on the variable and select one of the buttons IN,INOUT, or OUT.(d) In the Distributions dialog click DIST/INOUT to toggle between the de�nitionof input/output and distribution speci�cations. To de�ne the distribution spec-i�cations of a variable click on the variable and select the desired dimension(s)and data distribution scheme(s).(e) If data distribution is to be done onto user-de�ned logical processor arraysrather than onto the one-dimensional default array, use the function ProcessorArrays in the Annotation submenu to de�ne the name and dimensionality ofall processor arrays (use Fortran syntax for the dimensions). Use the ONTOclause in the Distributions dialog to refer to de�ned processor arrays.(f) The dimensions of processor arrays may be made dependant on symbolic con-stants. If this is desired, use the names of existing or yet unde�ned symbolicconstants in the processor array dimensions. Speci�c values for new symbolicconstants may be provided via a popup dialog window. The value of exist-ing symbolic constants may be changed with the Constants function in theAnnotation submenu.(g) Use the Options item in the Annotation submenu to switch on debugging, ifdesired. First call and Last call may be used to switch on parallelization3

(and debugging) for only the speci�ed number of subroutine calls (0 means allcalls).(h) After having made all de�nitions for input/output, data distribution, and de-bugging, use one of the functions MP Transform or NFS Transform in theSystem submenu to activate the code generation phase. Here, MP stands forMessage Passing via network and NFS means data exchange via NFS shared�les. For performance reasons and for ease of use, the network communicationmethod should be preferred. Either of these functions will create two source�les, one for the modi�ed sequential program and one for the new parallel pro-gram. A popup window will inform you about the names of the created source�les and eventually about errors that occured during code generation.(i) Now quit TOP2 to proceed with the following steps.7. At this point TOP2 has generated a sequential program and a parallel programskeleton. The parallel program skeleton contains all code required to do the datadistribution and cross-domain message passing. The parallelized program kernel,however, has to be inserted manually. Use the comments in the generated code as aguideline, as to where to insert the parallel code.8. Compile the generated sequential program part with the command top2.makes onthe Sun workstation.9. Compile the parallel program part with the command top2.makep either on the Sunworkstation (cross-compilation) or on Paragon.10. The commands top2.makes and top2.makep implement only basic compiler optionsfor the compilation of the sequential and parallel code. If this is not su�cient, copythe make�le $TOP2HOME\lib\makefile_sp into the working directory and modify itaccording to your needs. The header of the make�le contains information on possibleoptions and targets for compilation.11. The parallelized program may now be executed as a distributed application on theSun workstation and on Paragon. Use standard UNIX commands to start the se-quential part on the Sun and the pexec procedure on the Paragon to start the parallelprogram part (don't forget to specify the appropriate number of nodes in the pexeccall). Note that the application must be started from the NFS mounted workingdirectory on both machines, if NFS is used as the data transport mechanism.12. If debugging is switched on through the appropriate source code directives, you willsee messages during program execution on your Sun workstation, if the results ofthe parallelized program fragment are di�erent between Sun and Paragon (with acertain threshold); otherwise execution will complete silently.13. If, after initial tests, you want to make changes to the existing application (e.g.change distribution schemes or processor arrays) you will have to rerun TOP2 andmake the desired changes. Note, that previous modi�cations to the parallel codefragment will not be lost, if all modi�cations had been made properly in the markedareas. Changes to the generated sequential code or outside the marked areas in theparallel code, however, will be lost and should therefore be avoided.4

3 The TOP2 AnnotatorThe interactive annotator performs an interprocedural data
ow analysis and supports theuser in de�ning the set of input and output variables for the parallel program segment.Secondly, it allows to interactively specify data distribution properties for these variables.In principle, the interprocedural data
ow analysis can be run unattended by the userand will produce correct results, as interprocedural and aliasing e�ects are taken intoaccount during analysis. In some cases, however, it will be useful to interactively optimizethe results of the analysis. This may be the case for array references, if conservativeassumptions have been made during the analysis due to the lack of complete def-use andarray kill information. An optimization (i.e. reduction in size) of the set of input andoutput variables will generally lead to better program performance during execution ofthe generated code, since less data has to be transferred between the sequential and theparallel machine. It is an error, however, to delete variables from the input or output liststhat are actually used as input or output, respectively. Variables that are used for thedimensioning of adjustable dimensioned arrays e.g. need to be declared in the input list.The second task of the annotator, the de�nition of data distribution, is always a user-driven interactive process. The TOP2 annotator provides dialogs to easily select arraysin the input/output set and de�ne distribution strategies for them. Furthermore, logicalprocessor arrays can be de�ned as the target of such data distributions.Another interactively supported action is the de�nition of symbolic constants that maybe used in the speci�cation of processor arrays and can help to make the program codemostly independent of a speci�c choice of the number of physical processors.3.1 Interactive functionsIn the following, all functions of the annotator will be shortly described:Submenu "System":Load Unit: Load a program unit into TOP2 for further processing. This call must bepreceeded by a call to Read Program in either the same session or a previous session.Read Program: Read the source of a Fortran program from a �le and convert it intoTOP2 internal representation. The source program must be given as a single �le.For later processing the program is split up into individual program units which arestored in the subdirectory units of the working directory.NFS Transform: Initiate the code generation phase of TOP2 with data communicationbeing implemented via NFS shared �les. This function produces a Fortran programannotated with directives and calls the TOP2 code generator which will generate amodi�ed sequential program and a parallel program skeleton out of the annotatedprogram. The naming conventions for the generated source �les are as follows:name.top2.f is the name of the annotated program, name.seq.f is the name of5

the sequential and name.par.f the name of the parallel program generated by thecode generator. In all cases name stands for the name of the original input program.Details of the code generation phase are described in section 4.MP Transform: This function is equivalent to the function NFS Transform, with theonly exception that MP Transform generates code that implements data communi-cation via network, rather than via NFS shared �les.Quit: Exit TOP2.Submenu "Annotation":Processor Arrays: De�ne logical processor arrays for later use in data distributionspeci�cations through a popup dialog window. The dialog allows to either enter thespeci�cation of new processor arrays or modify those of existing ones. Processorarrays may be one- to seven-dimensional. The processor array speci�cations maybe entered by the user in Fortran-like syntax where the dimensions may be eitherconstants or symbolic constants (e.g. PROC(12,ip,ir)). If processor array dimen-sions are de�ned through symbolic constants, a separate popup dialog allows to enterspeci�c values for these constants. During execution of the parallelized application,each processor array is mapped to the physically available processors. Therefore, thesize of all processor arrays (product of all dimensions) must be identical and mustmatch the number of processors allocated during program execution.Constants: Modify the value of already existing symbolic constants. Symbolic constantsare implemented through Fortran PARAMETER statements.Distributions: Modify the input/output lists generated by the annotator and de�nedata distribution strategies for arrays in these lists. The button DIST/INOUT inthe popup dialog window allows to toggle between these two functions. If the in-put/output function is activated, variables and arrays may be moved from one listto another by clicking on them and selecting the desired list. If the distributionfunction is activated, distributions may be de�ned by clicking on the variable andselecting the desired distribution policy in the appearing popup window. Block,cyclic, or replicated ("*") distribution may be speci�ed for each of the array dimen-sions. In this dialog the ONTO clause may be used to de�ne distribution onto analready de�ned processor array. If this feature is used, the number of the processorarray dimensions must match the number of those array dimensions with distributionpolicy other than "replicate".If multiple arrays are selected in the dialog window one after the other, the followingselection of the distribution strategy and the ONTO clause will be applied equally toall selected arrays. This mode of operation may be useful, if a number of arraysrequire identical data distributions.Options: Switch on debugging. First call and Last call may be used to switch onparallelization (and debugging) for only the speci�ed number of subroutine calls (0means all calls). The latter functions may be used to reduce the debugging overheadand the overhead for distributed processing of the application, if it is known e.g.that an error that is to be analyzed occurs only after a certain number of calls tothe parallelized subroutine. 6

3.2 ResourcesThe TOP2 annotator uses an X Window resource �le named Top2 that de�nes severalproperties of dialog items. It is recommended that this resource �le be copied from$TOP2HOME/resources into the working directory to assure that it is read during start-upof TOP2, or that the standard X Window function xrdb be used to merge the contentsof the �le into the existing X server's resource database. If desired, user-speci�c changesmay be applied to this �le.4 TOP2 Code GeneratorThe TOP2 code generator converts the source directives inserted into the input programinto a sequential program and a parallel program skeleton. The sequential program iscomplete in that it may be compiled without further changes. The parallel programskeleton, however, needs to be completed by the programmer, as it doesn't yet contain thecode for the parallel program segment. Details on how the generated code is structuredand what modi�cations are to be made by the user are given in section 8.The code generator is normally called by the annotator, but may as well be called directlyfrom the command line. It takes some options that may either be speci�ed on the commandline or be provided through a resource �le and the name of the annotated input �le.Modi�cations applied to the resource �le will be honored independent on how the codegenerator was called, command line options may, however, only be set, if it is called fromthe command line.4.1 Command Line CallIf the code generator is called from the command line, the general syntax of the call is asfollows:top2pp [options] �lenamewhere �lename is the name of the annotated Fortran program and options maybe of the following:-e[ewci] or -d[ewci]-e switches on, -d switches o� messages of class e (error), w (warning), c(caution), i (informative). The default is -eewci.-l[a|c|i] 7

-l de�nes the language dialect to be used: a (ANSI), c (CRAY), i (IBM).This switch is used for the proper handling of data types in declarations andcross-domain message passing. For byte-oriented machines like workstationsthe switch should be set to -li (default for the Sun implementation).-c[c|x]-c de�nes the communication method to be used for data exchange betweenthe sequential and the parallel program segment: c denotes communication viaNFS shared �les and x cross-domain message passing via network (UNIX socketcommunication). In both cases, XDR routines are used for data conversion.The default is -cx.4.2 ResourcesThe resource �le of the code generator allows to de�ne user-speci�c options, even ifthe code generator is called by the annotator. A default resource �le is provided in$TOP2HOME/resources, named top2pprc. This �le may be copied into a user-owned di-rectory and modi�ed according to the user's needs. In order to activate a resource �leother than the default �le, the environment variable TOP2PPRC has to be set to the new�lename (absolute or relative path name including the �le name).As the code generator is not an X Window based application, the resource �le is not XWindow speci�c and may not be merged into the X server resource data base. The generalsyntax of entries in the resource �le is as follows:resourcename resourcevalueThe following name/value pairs are currently recognized:N$PROC numberDe�ne a default number of processing nodes for the parallel program for usein default processor arrays (default: 4).SEQ_IN_FILE �lenameName pre�x for the �les containing the input data for the parallel programsegment during cross-domain communication. This name pre�x is used by thesequential program segment to write the "input" data. For each processingnode the �le pre�x is su�xed with the node number. "IN." is the default.PAR_IN_FILE �lename 8

Name pre�x for the �les containing the input data for the parallel programsegment during cross-domain communication. This name pre�x is used bythe parallel program segment to read the "input" data. For each processingnode the �le pre�x is su�xed with the node number. For communication viaNFS shared �les, this �le name should be identical to the name de�ned underSEQ_IN_FILE. "IN." is the default.SEQ_OUT_FILE �lenameName pre�x for the �les containing the output data of the parallel programsegment during cross-domain communication. This name pre�x is used by thesequential program segment to read the "output" data. For each processingnode the �le pre�x is su�xed with the node number. "OUT." is the default.PAR_OUT_FILE �lenameName pre�x for the �les containing the output data of the parallel programsegment during cross-domain communication. This name pre�x is used by theparallel program segment to write the "output" data. For each processingnode the �le pre�x is su�xed with the node number. For communication viaNFS shared �les, this �le name should be identical to the name de�ned underSEQ_OUT_FILE. "OUT." is the default.MSG_FILE �lenameName of the �le receiving all messages of the code generator. Default is stdout.MSG_ERROR booleanMSG_WARNING booleanMSG_CAUTION booleanMSG_INFO booleanSwitch on or o� messages of severity levels Error to Informative. Default istrue for all messages.PRETTY_PRINTER booleanSwitch on or o� the usage of the Fortran pretty printer for all automaticallygenerated code. Default is true.P_MACHINE netname 9

De�ne the name of the parallel machine in the network. The default is Paragon.COMMUNICATION methodDe�ne the communication method for the exchange of data between the se-quential and the parallel machine. Method may be either NETWORK (default)or NFS.CMD_PORT numberDe�ne the port number for initial communication setup, if the selected com-munication method is NETWORK. Note that this port is only used for commu-nication setup, the actual data exchange is realized via dynamically allocatedports. Number must be an integer in the range 5000 � number � 16383. Thedefault is 5011.5 Source Code DirectivesSource code directives are used for communication between the TOP2 annotator and thecode generator. Normally there will be no need for the user to directly insert or modifydirectives, even though this is well possible. In the following, syntax and semantics of alldirectives will be described.The general format of TOP2 directives isCKFA$ keyword [value]Each directive starts on a new line at column one. If necessary, directives may be continuedon subsequent lines in the formatCKFA$* continued text,however, all keywords must appear on the �rst line. TOP2 source code directives are notcase sensitive.The following keyword/value pairs are currently recognized by the code generator:IN variable listOUT variable listINOUT variable listThese directives de�ne variables and arrays that are input or output for theparallel program segment. Variable list is a blank- or comma-separated list ofvariable names. 10

Example:CKFA$ IN A, SUM, CARRAYPROCESSORS procspec listThis directive de�nes one- or multi-dimensional logical processor arrays thatcan be used for data distribution. Procspec list is a blank- or comma-separatedlist of processor speci�cations. Each processor speci�cation has the formprocname(dim[,dim ...]), where procname is the name of the processor arrayand dim is a dimension expression consisting of either a constant or a symbolicconstant (Fortran PARAMETER constant). A maximum of seven dimensions maybe speci�ed for each processor array. The size of each processor array (theproduct of all dimensions) directly determines the number of compute nodesused during execution. If more than one processor array is de�ned, the sizesof all processor arrays must be equal.Example:CKFA$ PROCESSORS P(2,IP), Q(16), RS(2,2,4)DISTRIBUTE distspec listThe distribute directive de�nes the data distribution policy for one or morearrays. Distspec list is a list of distribution speci�cations, each de�ning thedistribution policy for one array. The format of each distspec item is de�nedas follows:distspec := arrayspec [ontoclause]arrayspec := arrayname(dspec[,dspec ...])dspec := BLOCK | B | CYCLIC | C | *ontoclause := ONTO procname"B" and "C" are abbreviations for "BLOCK" and "CYCLIC", respectively, "*"means replication in that dimension. Note that the ONTO clause may onlybe missing, if distribution is to be done in only one dimension onto the one-dimensional default processor array. More generally, the number of distributedarray dimensions (those di�erent from "*") must match exactly the number ofdimensions of the corresponding processor array.Examples:CKFA$ DISTRIBUTE A(BLOCK,CYCLIC,*) ONTO PCKFA$ DISTRIBUTE B(*,B,*) ONTO Q, D(C) ONTO QCKFA$ DISTRIBUTE CARRAY(BLOCK)N$PROC numberIn this directive number de�nes the number of processing nodes used for datadistribution; this is also the size of the one-dimensional default processor array11

 REAL A(13)

CKFA$ PROCESSORS P(4)

CKFA$ DISTRIBUTE A(BLOCK) ONTO P

Block Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13

P(1) P(2) P(3) P(4)

 REAL A(7)

CKFA$ PROCESSORS P(5)

CKFA$ DISTRIBUTE A(BLOCK) ONTO P

P(1) P(2) P(3) P(4) P(5)

1 2 3 4 5 6 7

 REAL A(13)

CKFA$ PROCESSORS P(4)

CKFA$ DISTRIBUTE A(CYCLIC) ONTO P

Cyclic Distribution

1 5 9 13 2 6 10 3 7 11 4

 REAL A(7)

CKFA$ PROCESSORS P(5)

CKFA$ DISTRIBUTE A(CYCLIC) ONTO P

1 6 2 7 3 4

8 12

5

P(1) P(2) P(3) P(4)

P(1) P(2) P(3) P(4) P(5)Figure 2: Example - Block and Cyclic Distributionthat is used if no ONTO clause is speci�ed. Note that the speci�ed numbermust be consistent with the size of all de�ned processor arrays. Number maybe either a constant or a symbolic constant. If the N$PROC directive is notspeci�ed, the number of processing nodes is computed from the size of any ofthe logical processor arrays. If no PROCESSORS directive is de�ned, a TOP2speci�c default is chosen (compare section 4.2).Example:CKFA$ N$PROC 32DEBUGThis directive switches on debugging.STARTSTOP start [stop]This directive allows to restrict parallelization of the selected parallel programsegment to a speci�c number of calls of the parallelized subroutine. Start isan integer number specifying the �rst call that is to be executed in parallel,stop speci�es the call after which processing is to be stopped. Before start isreached, processing of the application is merely sequential, if stop is reached,processing halts. A value of 0 for startmeans that parallel processing is startedright from the beginning (default), a value of 0 for stop means that processingis not to be halted before the completion of the program (default).12

6 Details of Data DistributionFor the development of the parallel code it will be necessary to precisely know how dataitems are distributed onto the physical processing nodes. Two important basic termsin this respect are "block" and "cyclic" distribution. Fig. 2 gives examples of thesedistribution schemes for one-dimensional arrays. From the performance point of view, itis important to notice that block distribution may lead to signi�cant load imbalance, ifthe array dimensions are not divisible by the number of blocks. Cyclic distribution, onthe other hand, can lead to an imbalance of one element per block at maximum.The extension of one-dimensional distributions to multi-dimensional distributions is ob-tained by distributing each array dimension onto one dimension of a multi-dimensionalprocessor array, where the number of distributed array dimensions must match the num-ber of processor array dimensions. The processor array is then mapped onto the physicalcompute nodes in column major order. Fig. 3 gives an example of a two-dimensionaldistribution for a three-dimensional array.For most applications it will not be necessary to directly refer to the formulae given below,since all basic index calculations for distributed arrays can be realized by means of theappropriate intrinsic functions that are available at run-time in the parallel code (seesection 7 for details).In the following, details of processor mappings and index calculations for multi-dimensionaldistributions will be given.6.1 Mapping Logical Processor Arrays to Physical ProcessorsLet P := f(r1; r2; : : : ; rs) j 1 � ri � pig be an s-dimensional processor array withn := sYi=1 pi(1)being the number of physical processing nodes. pi is called the size of dimension i of theprocessor array.Let (r1; r2; : : : ; rs) 2 P be a logical processor with respect to processor array P . Themapping PP : P ! [0; : : : ; n� 1] withPP (r1; : : : ; rs) = sXi=1 (ri � 1) i�1Yk=1 pk(2)de�nes the column major ordering of logical processors in P onto the physical processors.The inverse PP : [0; : : : ; n� 1]! P , mapping physical processors to logical processors inprocessor array P , is given by PP (n) = (r1; : : : ; rs) withri = 6666664n mod iQk=1 pki�1Qk=1 pk 7777775+ 1; 1 � i � s:(3) 13

 REAL A(100,75,133)

CKFA$ PROCESSORS P(8,5)
CKFA$ DISTRIBUTE A(B,*,B) ONTO P

1st dim.

2nd dim.

3rd dim.

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(8,1)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

d’ = 13
1

d’ = 75
2

d’ = 27
3

node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7

node 0

node 8

node 16

node 24

node 32

Processor (3,4) (= Node 26):

(3,4) =

node 26

 REAL A’(13,75,27)

 a’(1, 1, 1) = a(27, 1, 82)
 a’(13, 1, 1) = a(39, 1, 82)
 a’(1,75, 1) = a(27,75, 82)
 a’(13,75, 1) = a(39,75, 82)
 a’(1, 1,27) = a(27, 1,108)
 a’(13, 1,27) = a(39, 1,108)
 a’(1,75,27) = a(27,75,108)
 a’(13,75,27) = a(39,75,108)

(8,5) =

node 39Figure 3: Example - Block Distribution of 3-dimensional Array6.2 Mapping Array Elements to Logical ProcessorsLet A := f(a1; a2; : : : ; am) j li � ai � uig be (the index space of) anm-dimensional Fortrandata array with di := ui � li + 1 (li lower bound, ui upper bound, di size of dimension i).Let P be an s-dimensional processor array with s � m.The m-tuple DAP := (g1; g2; : : : ; gm) is called a distribution of A with respect to P if thefollowing holds: gi 2 fblock; cyclic; replicategand gi 6= replicate; for exactly s elements:For the following, those elements gi 6= replicate will be numbered gj1 ; gj2; : : : ; gjs, suchthat gjk corresponds to dimension k of processor array P .DAP de�nes a mapping DAP : A ! P � A0 of elements of the undistributed array A toelements of the distributed array A0 on logical processor (r1; : : : ; rs) 2 P withDAP (a1; : : : ; am) = (r1; : : : ; rs; a01; : : : ; a0m):It is A0 := f(a01; : : : ; a0m) j l0i � a0i � u0ig and d0i := u0i � l0i + 1 withd0i = (l dipk m if gi 6= replicatedi else(4)where pk corresponds to element gi = gjk .In TOP2 the lower bound of any distributed arrayA0 is always identical to the lower boundof the corresponding undistributed array A, i.e.l0i = li(5)and thus u0i = d0i + li � 1:(6) 14

The index mapping of elements of A to elements of A0 (i.e. the mapping of global arrayindices to local indices) is given bya0i = 8><>: ((ai � li) mod d0i) + l0i if gi = blockb(ai � li)=pkc+ l0i if gi = cyclicai if gi = replicate(7)The logical processor number (r1; : : : ; rs) is given byrk = (b(ajk � ljk)=d0jkc+ 1 if gjk = block((ajk � ljk) mod pk) + 1 if gjk = cyclic(8)The inverse DAP : P � A0 ! A, mapping local indices to global indices, is given byDAP (r1; : : : ; rs; a01; : : : ; a0m) = (a1; : : : ; am) withai = 8><>: d0i(rk � 1) + (a0i � l0i) + li if gi = block(a0i � l0i)pk + (rk � 1) + li if gi = cyclica0i if gi = replicate(9)where k corresponds to i = jk.7 Intrinsic Functions for Index Calculations on DistributedArraysTOP2 supports the partial parallelization of big applications by providing a mechanismfor the separation of parallelizable code segments from the sequential code. This includesan easy way to experiment with various data distribution schemes via interactive userdirectives. As, however, the resulting parallel SPMD code has to be provided manually bythe user, it may be rather intricate to implement the index calculations for the addressingof distributed arrays, if complicated distribution schemes have been used in the interactivephase of TOP2.In the following, a set of intrinsic functions will be described that facilitate index calcu-lations on distributed arrays. This set of routines also includes functions for the inquiryof array, processor array, or distribution properties in the parallel code. The describedfunctions are 'intrinsic' in that they are directly related to the distribution scheme chosenduring the interactive phase of TOP2, i.e. information from this phase is automaticallypassed to the intrinsic functions.In order to allow the utilization of the TOP2 intrinsic functions even if an applicationhas been entirely parallelized and ported to the parallel machine (and, thus, should beindependent of TOP2), the implementation of these functions follows a two-level procedure:� Level-one routines collect all information on arrays, processor arrays, and distri-butions and store them in an internal data base. As long as TOP2 is used, theseroutines are automatically called in the parallel program for all relevant distributionitems (compare section 7.3). If the TOP2 intrinsics are to be used separate fromTOP2, however, the level-one routines have to be explicitely called in the user code.15

� Level-one routines return a handle for each array, processor array, and distributionthat is de�ned. These handles are passed to the level-two routines that implementthe actual index calculations for the thus identi�ed items. Handles may be passedthrough a prede�ned COMMON block /TOP2_XQ5/ within the user code, if TOP2is used, or through a user-de�ned COMMON block, if used independently of TOP2.When used with TOP2, the naming convention for handles is such that TOP2 ap-pends a su�x _phd$ to each processor name (thus a processor array PROC may beidenti�ed through the handle PROC_phd$). Respectively, _ahd$ is appended to eacharray name and _dhd$ to the name of each array distributed onto a given processorarray.7.1 Level-One Intrinsic FunctionsLevel-one routines de�ne or un-de�ne the size and shape of arrays and processor arrays orthe characteristics of distribution schemes used for the distribution of arrays onto processorarrays. All arguments described in the following are of type INTEGER.De�ne the size and shape of a processor array:CALL TOP2_DEF_PROC(proc_phd$,dim,d)proc_phd$ processor array handle (output)dim number of dimensions (input)d 1-D array of size 7 holding the processorarray sizes (input)De�ne the size and shape of a Fortran array:CALL TOP2_DEF_ARRAY(array_ahd$,dim,bounds)array_ahd$ array handle (output)dim number of dimensions (input)bounds 1-D array holding the lower and upperbounds of the array in the formlow1, high1, low2, high2, ... (input)De�ne the distribution of an array onto a processor array:CALL TOP2_DEF_DIST(dist_dhd$,proc_phd$,array_ahd$,dim,d)dist_dhd$ distribution handle (output)proc_phd$ processor array handle (input)array_ahd$ array handle (input)16

dim number of dimensions (input)d 1-D array of size 7 holding the distributioncharacteristics (input):0 = replicate (undistributed)1 = block2 = cyclicUnde�ne one or all de�ned processor array(s), i.e. release the processor array handle(s):CALL TOP2_UNDEF_PROC(proc_phd$)proc_phd$ processor array handle,if speci�ed as -1 then all currentlyassigned processor array handles arereleased (input)Unde�ne one or all de�ned Fortran array(s), i.e. release the array handle(s):CALL TOP2_UNDEF_ARRAY(array_ahd$)array_ahd$ array handle,if speci�ed as -1 then all currentlyassigned array handles are released (input)Unde�ne one or all de�ned array distribution(s), i.e. release the distribution handle(s):CALL TOP2_UNDEF_DIST(dist_dhd$)dist_dhd$ distribution handle,if speci�ed as -1 then all currentlyassigned distribution handles are released (input)7.2 Level-Two Intrinsic FunctionsLevel-two routines implement index calculations and inquiry functions for items de�nedthrough level-one routines and identi�ed through the appropriate handle. In the following,the term global with respect to indices denotes indices in the undistributed array as existingin the sequential program, the term local, on the other hand, denotes compute nodespeci�c indices of a distributed array. All arguments described in the following are of typeINTEGER. 17

Compute the physical node number of the owner of an array element identi�ed by itsglobal array indices:CALL TOP2_GET_OWNER(dist_dhd$,indx,owner)dist_dhd$ distribution handle of distributed array (input)indx 1-D array holding the global array indices (input)owner physical node number of owner (output)Compute the local indices of a distributed array from its global indices:CALL TOP2_GET_LOCAL(dist_dhd$,gx,lx)dist_dhd$ distribution handle of distributed array (input)gx 1-D array holding the global array indices (input)lx 1-D array taking the local array indices (output)Compute the global indices from the local indices of an array element for a given owner:CALL TOP2_GET_GLOBAL(dist_dhd$,owner,lx,gx)dist_dhd$ distribution handle of distributed array (input)owner physical node number of owner (input)lx 1-D array taking the local array indices (input)gx 1-D array holding the global array indices (output)Compute the range of global indices of an array section owned by a given owner:CALL TOP2_GET_RANGE(dist_dhd$,owner,low,high,inc)dist_dhd$ distribution handle of distributed array (input)owner physical node number of owner (input)low 1-D array taking the lower bounds of the globalarray indices in each dimension (output)high 1-D array taking the upper bounds of the globalarray indices in each dimension (output)inc 1-D array taking the increment of the globalarray indices in each dimension (for cyclicdistribution) (output)18

Compute the size and shape of a local array section for a given owner (this results in theactually used array elements, not the declared dimensions of the local array):CALL TOP2_GET_SHAPE(dist_dhd$,owner,low,high)dist_dhd$ distribution handle of distributed array (input)owner physical node number of owner (input)low 1-D array taking the lower bounds of the localarray indices in each dimension (output)high 1-D array taking the upper bounds of the localarray indices in each dimension (output)Compute the logical processor array element indices in a processor array (correspondingto a given processor handle) from the physical node number:CALL TOP2_GET_PROC(proc_phd$,node,indx)proc_phd$ processor array handle (input)node physical node number (input)indx 1-D array taking the processor array indices (output)Compute the physical node number from the processor array indices of a given logicalprocessor array:CALL TOP2_GET_NODE(proc_phd$,indx,node)proc_phd$ processor array handle (input)indx 1-D array holding the processor array indices (input)node physical node number (output)Compute all physical node numbers for a given logical processor array and store them inan array conformant in size and shape to the processor array:CALL TOP2_GET_ALLNODES(proc_phd$,nodes)proc_phd$ processor array handle (input)nodes n-D array taking the node numbers for the givenprocessor array (output)Compute the size and shape of a logical processor array as de�ned in a previous call toTOP2_DEF_PROC: 19

CALL TOP2_GET_PSHAPE(proc_phd$,dim,indx)proc_phd$ processor array handle (input)dim processor array dimension (output)indx 1-D array taking the processor array size for eachdimension (output)Compute the global size and shape of an undistributed array as de�ned in a previous callto TOP2_DEF_ARRAY:CALL TOP2_GET_ARRSHAPE(arr_ahd$,dim,low,high)arr_ahd$ array handle (input)dim array dimension (output)low 1-D array taking the array's lower bounds for eachdimension (output)high 1-D array taking the array's upper bounds for eachdimension (output)Compute the characteristics of a distribution as de�ned in a previous call to TOP2_DEF_DIST:CALL TOP2_GET_DIST(dist_dhd$,proc_phd$,arr_ahd$,dim,dist)dist_dhd$ distribution handle (input)proc_phd$ processor handle (output)arr_ahd$ array handle (output)dim number of dimensions of the distribution (output)dist 1-D array taking the distribution speci�er for eachdimension: 0 = replicate, 1 = block, 2 = cyclic.(output)7.3 ExampleThe following section gives a short example for the use of the TOP2 intrinsic functions in aparallel program. As denoted below, part of the code stems from the interactive annotationphase of TOP2, some parts are automatically generated during the code generation phaseof TOP2, and some have to be provided by the user (compare section 8 for details on thestructure of the generated code).The following example assumes three directives to be created during the interactive phaseof TOP2: 20

CKFA$ PROCESSORS P(IP1,IP2)CKFA$ INOUT ARRAYCKFA$ DISTRIBUTE ARRAY(BLOCK,CYCLIC,*) ONTO PThe parallel main program produced during the code generation phase of TOP2 willcontain all code required for the de�nition of the distributed arrays and the involvedprocessor arrays. All handles of these items will be declared and de�ned, and will be passedin a COMMON block named /TOP2_XQ5/ for use in the user-provided parallel subroutine(Note that the one-dimensional default processor array P$PROC and its correspondingprocessor array handle P$PROC_phd$ are always de�ned):PROGRAM PARMAIN. . .COMMON /TOP2_XQ5/ P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$SAVE /TOP2_XQ5/CC --- Define processor descriptors ---C P$PROC_$pd$(1) = 1P$PROC_pd(2) = 8C P_pd(1) = 2P_pd(2) = 4P_pd(3) = 2. . .CALL TOP2_DEF_PROC(P$PROC_phd$, P$PROC_$pd$(1), P$PROC_pd(2))CALL TOP2_DEF_PROC(P_phd$, P_$pd$(1), P_$pd$(2))CALL TOP2_DEF_ARRAY(ARRAY_ahd$, ARRAY_$ad$(4), ARRAY_$ad$(5))CALL TOP2_DEF_DIST(ARRAY_dhd$, P_phd$, ARRAY_ahd$, ARRAY_$dd$(1),1 ARRAY_$dd$(2))CALL PARSUB(ARRAY). . .The generated parallel subroutine skeleton contains code that makes the handles of alldistribution items available in COMMON /TOP2_XQ5/. Declarations that might be requiredfor arguments to any of the TOP2 intrinsic functions, however, must be speci�ed in theuser-speci�c code section:SUBROUTINE PARSUB(ARRAY)PARAMETER (N1=100, N2=100, N3=10)21

REAL*8 ARRAY((N1-1+4)/4,(N2-1+2)/2,N3). . .CC --- Common block for address intrinsics ---C COMMON /TOP2_XQ5/ P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$SAVE /TOP2_XQ5/INTEGER P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$CC --- PARSUB: --- Make all your code changes below this line ---C integer low(7),high(7),owner,indx(7),lx(7)CC Use TOP2 intrinsics to print global array elementC ARRAY(73,25,3) on the local nodeC indx(1) = 73indx(2) = 25indx(3) = 3call top2_get_owner(ARRAY_dhd$,indx,owner)if (owner .eq. mynode()) thencall top2_get_local(ARRAY_dhd$,indx,lx)write(*,*) 'ARRAY(73,25,3) = ', ARRAY(lx(1),lx(2),lx(3))write(*,*) 'Owner = ',owner,' local = ', lx(1),lx(2),lx(3)endifCC Use TOP2_GET_SHAPE to compute the bounds of each arrayC section on the nodeC call top2_get_shape(ARRAY_dhd$,mynode(),low,high)do i = low(1), high(1)do j = low(2), high(2)do k = low(3), high(3)array(i,j,k) = array(i,j,k) + 1.0enddoenddoenddo. . .8 The TOP2 Generated CodeThe source code generated by TOP2 is basically structured into two independent com-ponents, the sequential code, containing practically the entire code from the original22

Parallelization of one Subroutine

Sequential Program

Unchanged

program

parts

Parallel-

izable

subroutine

Unchanged

program

parts

Main

program

Parallel

subroutine

Data and Control Flow

Parallel Program

Distribute

MergeFigure 4: Structure of TOP2 Generated Codeapplication, and the parallel code skeleton, containing all declarations required for theparallelization of the selected program kernel and code for the cross-domain message pass-ing (Figure 4).Normally, there will be no need for the user to concern about the generated sequentialcode, as it is directly compilable and should not be modi�ed. The parallel code, instead,will always have to be modi�ed. For the understanding of the principles of operation ofthe TOP2 generated code, a short description of the structure of the generated sequentialand parallel code is given in the following.8.1 Code StructureThe main tasks of the TOP2 code generator are, �rst, to cut o� the parallelizable programsegment from the sequential program, and, second, to provide for the execution of theparallel program on the parallel machine. This is achieved by transmitting all input datafrom the sequential machine to the parallel machine and by returning the result data backafter execution.Assuming a principle structure of the original sequential program like the followingprogram example...call sub(args1)...call sub(args2) 23

...endsubroutine sub(args)declarationsexecutable codeendthe modi�ed sequential program would basically look as follows:program example...call sub(args1)...call sub(args2)...endsubroutine sub_org(args)declarationsexecutable codeendsubroutine sub(args)declarationscount = count+1if count >= start thencall send_input_dataif (debug) thencall sub_org(args)call receive_output_data_and_compareelsecall receive_output_dataendifelsecall sub_org(args)endifif count = stop thenstopendifendIn this code, the original subroutine that is to be parallelized has been cut o� by simplyrenaming it. This renamed sequential subroutine is called if debugging is switched on inorder to allow a comparison of the original sequential results with those of the parallelizedroutine. In both cases, with and without debugging, a modi�ed version of the originalsubroutine is called that contains all declarations of the original, but none of its executablecode. Instead, code has been inserted to send the input data to, and receive the output data24

from the parallel machine. Furthermore, a counter has been established that counts thenumber of calls to the subroutine and allows to implement the semantics of the STARTSTOPdirective.The "send_input_data" and "receive_output_data" run-time routines perform twotasks, �rst, the distribution and merging of the data according to the user-de�ned distri-bution strategy and, second, the conversion of the data from the internal data representa-tion of the sequential machine to that of the parallel machine and vice versa. In order toallow the implementation of TOP2 on a broad class of sequential and parallel machines,the XDR format (External Data Representation) has been used for data conversion whichis part of the NFS software and, thus, commonly available on a wide range of machines.The basic structure of the generated parallel code skeleton is as follows:program mainmain_declarationscall receive_input_datacall sub(args)call send_output_dataendsubroutine sub(args)sub_declarations1C--- user modifications ---sub_declarations2executable parallel codeendother_subroutinesThe parallel main program is responsible for receiving the input data and sending theoutput data of the parallel subroutine. It contains declarations (main_declarations) thatare similar to those of the original subroutine except for distributed arrays and for arraysthat are "adjustably dimensioned" in the original code. Distributed arrays have the arraydimensions adjusted according to the selected data distribution policy and the size of thetarget processor arrays. Adjustably dimensioned arrays are implemented through dynamicmemory allocation at run-time. The parallel main program (and also, of course, theparallel subroutine) is implemented in SPMD programming style, i.e. the communicationwith the sequential program is a parallel operation performed on all processing nodes. Forcommunication via network this means that there is one open bidirectional socket streamfor each compute node. For communication via NFS shared �les it means that one NFS�le is used per node and communication direction. Thus, reading and writing input andoutput data can be implemented through parallel I/O on all nodes.The parallel main program normally should not be modi�ed by the user, as modi�cationsto it will be lost if TOP2 is run again, generating a new version of the parallel code.Contrarily, the parallel subroutine will always have to be modi�ed by the user and, hence,contains provisions that assure that user-speci�c changes are kept across calls of TOP2.25

The parallel subroutine skeleton contains practically all declarations of the original se-quential subroutine (sub_declarations1); only the dimensions of distributed arrays areadjusted accordingly. This makes the development of the parallel code easier for the user,as argument lists, COMMON blocks, and type declarations look the same as in the sequentialprogram. These automatically generated declarations may be followed by additional user-written declarations (sub_declarations2) and the executable parallel code. Fur-thermore, additional subroutines required for the implementation of the parallel algorithmmay be added to the parallel program skeleton (other_subroutines). The latter threeuser-provided code regions are in a way protected by TOP2 and will be kept across multiplecode generation phases.8.2 Applying Changes to the Parallel ApplicationThe basic strategy for developing the parallel code from the given sequential programhas been outlined above. If, after some tests, changes are to be applied to the existingapplication (e.g. changes to the data distribution strategy or the dimensions of arrays, orthe parallelization of program parts di�erent from the previously selected) certain rulesshould be followed. In the following, typical such modi�cations and how they should behandled will be described.Changing the Number of Compute Nodes for ExecutionIn TOP2 programs, the number of compute nodes used for execution will typically in
uencethe dimensions of distributed arrays and the size of logical processor arrays and, as aconsequence of this, also the distribution pattern of the distributed arrays. It is goodprogramming practice to make all user code dependant of one or only a few symbolicconstants that de�ne the number of compute nodes used. If the actual value of such asymbolic constant is to be changed, either of two ways may be chosen:1. Make the changes via the TOP2 annotator's interactive dialogs. If this alternativeis chosen, it is required that the program units of the application still be stored ininternal format in the "units" directory created by the annotator. This allows to usethe function "load unit" to read in the program unit together with all annotationsand make the desired changes. Afterwards, the code generation phase has to beactivated again, and, �nally, the sequential and parallel program segments have tobe compiled.2. As changing the number of compute nodes does not change input and output of theparallel program segment, it is not necessarily required to run the TOP2 annotatorto make this type of changes. Instead, the changes can also be made with a texteditor in the annotated Fortran program. The TOP2 code generator, however, hasto be run again after these changes in order to assure proper code generation for datadistribution and array dimensioning. Note that, if changes are made using an editor,the internal representation of the program units stored in the "units" directory willno longer be consistent with the latest version of the annotated source code.26

Changing the Distribution StrategyIn principle, both alternatives that have been described above for the modi�cation ofthe number of compute nodes also apply to changes of the distribution strategy. As,however, the latter type of modi�cation is even more incisive than the former one, it isrecommended that these changes always be applied through the TOP2 annotator. Toavoid inconsistencies in the directory "units", no more than one application should bemanipulated at a time and a new "working directory" should be established for each newapplication.Parallelizing more than one Program KernelFor the parallelization of entire sequential applications it will in most cases be necessary toparallelize more than one program kernel. In the current version, TOP2 doesn't activelysupport this functionality. It is therefore recommended to proceed in steps in order toachieve the �nal goal. A bottom-up strategy should be followed during this process:1. Parallelize and debug one program kernel as outlined above.2. Store the developed parallel code (the parallelized subroutine on top and eventuallyadditional subroutines that are needed to implement the parallel algorithm) in aseparate �le.3. Clear the working directory and start the entire process of TOP2 supported par-allelization again, selecting a new program kernel from the original sequential pro-gram. Try to �nd a consistent strategy with respect to data distribution of globaldata structures. This will make the assembly of all parallelized program segmentseasier and more e�cient.4. After having parallelized all major program kernels, parallelize the remainder of thecode. This should, ideally, be a framework consisting of components providing inputdata for the parallel tasks and distributing it, some sort of control
ow manager thatcalls the parallel program segments, and eventually some postprocessing componentsfor output.5. Put all separately parallelized program components together to form a native SPMDparallel program. If possible, avoid the need for additional run-time support likedynamic redistribution of data. The now constructed parallel program should becompletely independent of TOP2 (perhaps with the only exception of the TOP2address intrinsic functions).9 Compilation and Execution of the Distributed Applica-tionAfter having made all modi�cations to the parallel code, the sequential and the parallelsource code will have to be compiled and then executed.27

9.1 CompilationThe compilation of the sequential code has to be done on the Sun workstation, the parallelcode can be compiled either on the Sun, using Paragon cross-compilation, or directly onthe Paragon.For ease of use, two simple procedures are provided that allow compilation with defaultcompiler options and assure that all required run-time libraries are properly accessed:top2.makes [name]top2.makep [name]top2.makes compiles the TOP2 generated sequential code named name.seq.f and mustbe called on the Sun. The optional parameter name needs not be speci�ed if only oneapplication is stored in the working directory (which should be the normal case). Accord-ingly, top2.makep compiles the parallel code. If it is called on Sun, cross-compilation willbe used, if called on Paragon, native compilation will be used.If the prede�ned compiler options used in the above procedures are insu�cient, it is rec-ommended to copy the �le makefile_sp from $TOP2HOME/lib into the working directoryand make the desired changes in the copy. This �le is the make�le internally called bytop2.makes and top2.makep, but it may as well be called directly from the commandline:make -f makefile_sp target PRG=namename is the name pre�x of the sequential or parallel code (without the trailing .seq.for .par.f), target may be seq or par to compile the sequential or the parallel code, orclean to remove all TOP2 generated temporary �les.9.2 ExecutionAfter compilation, the sequential and the parallel program segments may be executed. Ifnothing else is speci�ed, the names of the executables will be nameseq and namepar. Ifthe selected communication method is NFS, both executables must be started from theNFS mounted working directory. For the sequential program normal UNIX commandsmay be used on the Sun workstation. On Paragon, the commandpexec namepar -sz sizeshould be used, where size must correspond to the number of processing nodes speci�edin the distribution declarations. For either of the implemented communication methods(NETWORK or NFS) it is unimportant, which of the two programs is started �rst. If the se-lected communication method is NETWORK, however, the parallel program should be startedno later than 90 seconds after the sequential program; otherwise the communication willbe timed out. 28

9.3 Communication via NetworkIf communication via network has been switched on, either interactively or by means of theappropriate option of the code generator, all data exchange between the sequential and theparallel program is handled via UNIX socket communication. Data conversion is realizedthrough imbedded XDR routines. Normally, the user of TOP2 will not have to care aboutany technical detail of the network communication, provided that the sequential and theparallel machine are both connected to the network and the correct network name of theparallel system is speci�ed in the resource �le of the code generator (see section 4.2).Technically, the parallel program is implemented as a communication server, the sequentialprogram as a communication client. If the server is not yet running when the client isstarted, the client will wait for 90 seconds for the server to reply to the request. After thisdelay, the communication will be timed out. If, on the other hand, the server is started�rst, it will wait until the client connects. In this case, no timeout is provided. For the �rsthandshaking between the server and the client, a �xed communication port is used thatmay be shared by multiple applications. This port is only used to transmit the identi�ersof dynamically allocated ports that actually carry the communication for each application.In order to make sure that a client connects to the proper server, the communication isprotected by a password. The password is automatically created during code generationand is checked up when the communication is established. In rare cases, password mis-matches might occur, if more than one TOP2 application is started right at the same time.In this case, the application will stop with an error message and should be started onceagain. If password mismatches occur frequently, it may be useful to select a new port forthe handshaking. This may be done by specifying the resource CMD_PORT in the resource�le of the code generator as described in section 4.2.It should be noted that, due to the password mechanism, it is not allowed to combinesequential and parallel code generated in distinct runs of the code generator.On Sun workstations, the default limit for open �le descriptors is typically 64. This willalso limit the number of open socket streams to 64 or less. If more than 64 nodes areto be used in the parallel program, it will be necessary to increase the descriptor limitaccordingly. The cshell on Sun workstations provides the commandlimit descriptors nnnthat sets the current limit to nnn open descriptors.9.4 Communication via NFS FilesIn the current version of TOP2 the communication between Sun and Paragon may alsobe realized through NFS shared �les. To allow for parallel I/O on Paragon, one �le isused per compute node for each communication direction. If not speci�ed otherwise, theinput data for the parallel program segment is sent in �les named IN.nnn, the output isreturned in �les named OUT.nnn, where nnn is a three-digit su�x de�ning the number29

of the compute node the data is related to. For synchronization between the sequentialand the parallel program segments, two �les lock0x0.file and lock0x1.file are used.Normally, these �les will be invisible to the user, if, however, the distributed applicationis killed during execution, it may be necessary to explicitly delete them.9.5 Rerunning the Parallel Program with Existing DataIn certain situations, it may be useful to rerun the parallel program on Paragon withoutalso rerunning the sequential code and, thus, reuse the already existing input data of aprevious run. This mode of operation is possible if communication is via NFS �les, if thesequential and the parallel program segments have already been run successfully, and ifthe input data produced by the sequential program still exist in the NFS �les.To start the parallel program in this mode, it is necessary to manually set up the synchro-nization �les with the commandsrm lock0x0.filetouch lock0x1.fileand then start the parallel program as described above.This will initialize the synchronization �les for one NFS read/write cycle, i.e. the parallelsubroutine will be called exactly once, read the input data, produce new output data, andthen stop. Note, that in this mode of operation no debugging of the output data will takeplace even if debugging is switched on, as the parallel program runs unattended by thesequential program.9.6 DebuggingIf debugging is switched on, the control and data
ow during execution of the distributedapplication are slightly di�erent from the normal case (Figure 5). With debugging switchedon, not only the parallelized program kernel is executed, but also the original sequentialkernel. After execution, the results of both components (all variables that are declaredto be output) are compared. Integer, Logical, and Character variables are compared foridentity, Real, Double Precision, and Complex variables are compared for equality withina certain allowed relative absolute error. Approximately two deviating digits are alloweddue to round-o� errors.If the results of the sequential and the parallel program kernel do not match, the TOP2run-time system will display messages on the Sun display giving the name of the involvedvariable (for arrays also the global array index), the node number, and the computedresult of the sequential and the parallel program kernel.If non-distributed arrays or variables are declared to be output, TOP2 checks if all nodesredundantly return the same result. If not, a warning message is displayed. In either case,30

Parallelization of one Subroutine

(with debugging)

Sequential Program Parallel Program

Unchanged

program

parts

Parallel-

izable

subroutine

Unchanged

program

parts

Main

program

Parallel

subroutine

Data and Control Flow

Data

comparator

Distribute

MergeFigure 5: Control Flow and Data Flow with Debuggingonly the result of node zero is copied back to the sequential program.10 Example10.1 Matrix MultiplicationIn the following, all major steps required to parallelize a given sequential program forParagon using TOP2 as a parallelization aid shall be demonstrated in an example. Theexample program implements a matrix multiplication and contains the following compo-nents:mxm.f: Source of the sequential program.mxm2.p: Parallel implementation of the matrix multiplication kernel (subroutine MATMUL).mxm2e.p: Parallel matrix multiplication kernel with imbedded error for demonstration ofdebugging.The sources of the example program components are stored in $TOP2HOME/demo.Step 1: Annotation and Code GenerationThe sequential program contains the subroutines INIT for the initialization of matrices A,B, and C, MATMUL for the matrix multiplication, and CHKSUM to compute a checksum of result31

matrix A. The parallel code for subroutine MATMUL implemented in �le mxm2.p is basedon a distribution of all three basic arrays A, B, and C in blocks of multiple columns andrequires that the corresponding array dimensions be divisible by the number of processingnodes.In the following, a distribution onto 8 nodes is used. Calling the TOP2 interactive an-notator and executing the interactive steps as described in section 2 should result in thefollowing directives inserted into the sequential program (�le mxm.top2.f in the workingdirectory):CKFA$ DEBUGCKFA$ PROCESSORS P(IP)CKFA$ IN B,C,M,N,LCKFA$ INOUT ACKFA$ DISTRIBUTE A(*,BLOCK) ONTO PCKFA$ DISTRIBUTE B(*,BLOCK) ONTO PCKFA$ DISTRIBUTE C(*,BLOCK) ONTO PINTEGER IPPARAMETER(IP=8)In the above, the IN and INOUT directives re
ect the results of the interprocedural data
ow analysis. B and C are input arrays used as operands for the matrix multiply, the scalarvariables M, N, and L are used for the adjustable dimension of all arrays and also as loopboundaries and are therefore input to the parallel program kernel. Array A is input andoutput, as the initialization values are carried from subroutine INIT into subroutine MATMULand the results are transferred back to subroutine CHKSUM. A parallel implementation ofsubroutine MATMUL, however, including the initialization of matrix A in the parallel code,would allow to change the INOUT directive into an OUT directive.According to the given parallel algorithm, data distribution is done in the second dimensionusing BLOCK distribution strategy for all three arrays. The blocks of data are distributedonto the one-dimensional logical processor array P of size IP. A PARAMETER statement hasbeen inserted by the TOP2 annotator to assign a speci�c value to the symbolic constantIP. Note that distribute directives without the ONTO clause would lead to essentially thesame data distribution onto the one-dimensional default processor array. The size of thisarray would, however, only implicitely be given through the respective TOP2 default, asno other processor array de�nitions are present in this code.During interaction with the TOP2 annotator, debugging has been switched on, whichresults in the corresponding DEBUG directive.The resulting generated sequential and parallel code are stored in �les mxm.seq.f andmxm.par.f (see functions "NFS Transform" and "MP Transform" in section 3).32

Step 2: Implementation of the Parallel AlgorithmThe generated sequential code for our example is complete in that it may be compiledwithout further changes. The generated parallel code skeleton comprises a main programand the declarations of the parallel subroutine MATMUL. The main program contains callsto the cross domain message passing routines receiving the input data and returning theoutput data of subroutine MATMUL; it should not be changed. The parallel subroutineMATMUL is ready to take up the parallel code. Any changes made to the subroutine shouldbe inserted between the comment lineC --- MATMUL: --- Make all your code changes below this line ---and the END statement of the subroutine. In our example, it is su�cient to include �lemxm2.p here.Additional subroutines required for the implementation of the parallel algorithm could beadded after the comment lineC --- Add all new subroutines below this line ---According to the data distribution policy speci�ed for this example, each node program ofthe parallel SPMD code receives one block of columns of matrices A, B, and C. Thus, thedistribution of these arrays determines the loop bounds of the loops in the parallel code.In the example code, the TOP2 intrinsic function TOP2_GET_SHAPE is used to compute thearray bounds of arrays A and B. In cases where explicit computations are to be made de-pending on the number of processors used, the TOP2 intrinsic function TOP2_GET_PSHAPEhas been used.Step 3: Compilation and ExecutionCompilation of the sequential and the parallel program is straightforward now and can bedone by using the procedurestop2.makestop2.makepthat may both be called on the Sun, if cross-compilation is to be used (otherwise top2.makepmust be called on Paragon).After this, executables named mxmseq and mxmpar will have been created in the workingdirectory (compare section 2). On the Sun, the sequential program may be executed bythe command 33

mxmseqthe parallel program may be executed on Paragon using the procedurepexec mxmpar -sz 8Note that it is not important which of the two programs is started �rst. If communicationis via NFS �les, however, both must be started from the NFS mounted working directory.The resulting output on Paragon should look similar toStarting matmul ...dclock: 0.7763022799990722FORTRAN STOPon Sun the output will beCalling matmul ...Starting matmul ...Result = -10035482.5739520Note that, due to debugging being switched on, the matrix multiplication kernel willredundantly be executed on the Sun workstation also.Step 4: DebuggingTo test debugging, the parallel code included in �le mxm.par.f may now be deleted again,and the �le mxm2e.p be included instead. The parallel code has to be compiled again andexecuted together with the sequential code.The output obtained on the Sun workstation should now look as follows:Calling matmul ...Starting matmul ...DEBUG: wrong results in variable A of subroutine MATMUL on node 5:Element(2 94) Seq: -97.714313400000 Par: 8.5000000000000Result = -10035376.3596386The index (2,94) of the erroneous array element is global and translates to local index (2,4)on physical node 5 according to section 6. The correct result for this array element is givenby the term "Seq: -97.714313400000", the result received from the parallel program isinstead "Par: 8.5000000000000". 34

10.2 Jakobi Solver for Poisson EquationThe directory $TOP2HOME/demo contains a second, more comprehensive example for thesolution of Poisson equations with Jakobi relaxations. The example consists of four �lesnamedjakobi.fjakobi.top2.fjakobi.par.fjakobi.README.The �le jakobi.README contains all information required to run the example with TOP2.11 LimitationsCurrently, some limitations are to be considered when using TOP2. The most importantones are listed below:1. TOP2 accepts ANSI Fortran 77 programs that may contain language extensions like� long names� underscore characters in names� DO / ENDDO� lower case source� *2, *4, *8 etc. notation for type lengths� IMPLICIT NONE� NAMELIST� TASKCOMMONHowever,� array syntax� pointers� 128 bit double precision data typeare currently not supported.2. TOP2 requires that the entire input program be contained in one �le and all includesand preprocessor macros be resolved.3. Normally, TOP2 generates all declarations required for the parallelized program seg-ment. However, currently DATA statements generated in the parallel code segmentfor distributed arrays do not re
ect the chosen data distribution scheme. Thus theyhave to be adjusted manually.4. Currently, TOP2 does not support adjustable dimension CHARACTER arrays aswell as assumed size arrays in the parallel code segment, as the proper dimensionscannot be determined at run-time. 35

12 TOP2 Installation on Sun and ParagonThe current implementation of TOP2 requires several components - executable modulesand procedures, run-time libraries, resource �les, documentation, and examples for demon-stration purposes. The diagram in Fig. 6 shows the placement of all TOP2 �les on Sunand Paragon, and also those �les the user may have to deal with in the working directory.13 Speci�c Considerations for the T3D Version in EaganDue to the speci�c situation, some details of the installation and usage of TOP2 on theCray T3D system at CRI in Eagan di�er from the description given in this manual. Inthe following, items speci�c to the T3D version are described.13.1 InstallationTOP2 is installed on T3D system typhoon in directory/cray/uss/u6/n5006/top2All �les are world accessible. To use the TOP2 tools and scripts the PATH environmentvariable should include the directory/cray/uss/u6/n5006/top2/binand the environment variable TOP2HOME should be set as follows:TOP2HOME = /cray/uss/u6/n5006/top2In case the directory top2 is to be copied to another place, the path and the environmentvariable have to be adjusted accordingly.13.2 ResourcesThe TOP2 code generator top2pp requires a resource �le that speci�es default values forsome code generation options. The default resource �le is$TOP2HOME/resources/top2pprc36

To make a copy of this �le to another place, the instructions in section 4.2 should befollowed.The TOP2 Annotator requires an X-based resource �le. To assure that the resources areproperly activated, they should be explicitly loaded into the X server's data base:xrdb $TOP2HOME/resources/Top213.3 FilesAs described previously, it is best to use an NFS mounted �le system for the Fortransources that are to be used with TOP2. This �le system should be accessible by theworkstation where the TOP2 tools run and also by the T3D host and the T3D itself.Normally, TOP2 generates all �les in this �le system, so they can directly be compiledwith the scripts top2.makes and top2.makep.As, however, the T3D loader currently doesn't load binaries from NFS �les, the compiledbinaries are currently copied to /ptmp/$LOGNAME. Hence, the execution of the sequentialand the parallel code should be started from this directory. Furthermore, if communi-cation is not via UNIX sockets but via NFS �les, these �les will as well be put into/ptmp/$LOGNAME, if the binaries were started there. Changes to these �le naming conven-tions can be made in the scripts top2.makes and top2.makep.

37

b
i
n

l
i
b

d
o
c

d
e
m
o

r
e
s
o
u
r
c
e
s

S
u

n

z
a

m
1

2
7

$
T
O
P
2
H
O
M
E

=

/
u
s
r
/
l
o
c
a
l
/
t
o
p
2

t
o
p
2

t
o
p
2
p
p

t
o
p
2
.
m
a
k
e
s

t
o
p
2
.
m
a
k
e
p

l
i
b
t
o
p
2
s
.
a

l
i
b
t
o
p
2
p
.
a

m
a
k
e
f
i
l
e
_
s
p

l
i
b
f
x
d
r
_
p
.
a

l
i
b
f
x
d
r
_
s
.
a

T
o
p
2

t
o
p
2
p
p
r
c

b
i
n

l
i
b

P
a

ra
g

o
n

z
a

m
1

5
8

$
T
O
P
2
H
O
M
E

=

/
u
s
r
/
l
o
c
a
l
/
t
o
p
2

t
o
p
2
.
m
a
k
e
p

l
i
b
t
o
p
2
p
.
a

m
a
k
e
f
i
l
e
_
s
p

l
i
b
f
x
d
r
_
p
.
a

U
s

e
r

w
o

rk
in

g
 d

ir
e

c
to

ry

N
F

S
 m

o
u

n
te

d
 o

n

S
u

n
 a

n
d

 P
a

ra
g

o
n

s
o
u
r
c
e
.
f

s
o
u
r
c
e
.
t
o
p
2
.
f

s
o
u
r
c
e
.
s
e
q
.
f

s
o
u
r
c
e
.
p
a
r
.
f

T
o
p
2

u
n
i
t
s
/
*

*
.
c
h
a
n
g
e
s

I
N
.
*

O
U
T
.
*

l
o
c
k
0
x
0
.
f
i
l
e

l
o
c
k
0
x
1
.
f
i
l
e

t
o
p
2
u
s
e
r
g
u
i
d
e
.
p
s m
x
m
.
f

m
x
m
1
.
p

m
x
m
2
.
p

m
x
m
2
e
.
p

j
a
k
o
b
i
.
f

j
a
k
o
b
i
.
t
o
p
2
.
f

j
a
k
o
b
i
.
p
a
r
.
f

j
a
k
o
b
i
.
R
E
A
D
M
E

Figure 6: TOP2 Files38

