FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik

D-52425 Jnlich, Tel. (02461) 61-6402

Interner Bericht

TOP2 — Tool for Partial Parallelization
Version 3.01
User’s Guide

Ulrich Detert, Michael Gerndt

KFA-ZAM-IB-9418

August 1994
(Stand 23.08.94)

TOP? - Tool Suite for Partial Parallelization
Version 3.01
User’s Guide

Ulrich Detert, Michael Gerndt
Forschungszentrum Julich GmbH

Zentralinstitut fur Angewandte Mathematik
Postfach 1913, D-52425 Julich

August 23, 1994

Contents

1 Introduction

2 Quick Start for Impatient Users

3 The TOP? Annotator
3.1 Interactive functions e

3.2 Resources e e e

4 TOP? Code Generator
4.1 Command Line Call e

4.2 ReSOUTLCES o o o e e e e e e

5 Source Code Directives

6 Details of Data Distribution
6.1 Mapping Logical Processor Arrays to Physical Processors

6.2 Mapping Array Elements to Logical Processors

7 Intrinsic Functions for Index Calculations on Distributed Arrays
7.1 Level-One Intrinsic Functions
7.2 Level-Two Intrinsic Functions

7.3 Exampleo e

8 The TOP? Generated Code
8.1 Code Structure e e e

8.2 Applying Changes to the Parallel Application

9 Compilation and Execution of the Distributed Application

ii

10

27

9.1 Compilation L 28

9.2 Execution e 28
9.3 Communication via Network 0. 29
9.4 Communication via NFS Files oL 29
9.5 Rerunning the Parallel Program with Existing Data 30
9.6 Debugging e 30
10 Example 31
10.1 Matrix Multiplication L L o 31
10.2 Jakobi Solver for Poisson Equation 35
11 Limitations 35
12 TOP? Installation on Sun and Paragon 36
13 Specific Considerations for the T3D Version in Eagan 36
13.1 Installation oL L 36
13.2 Resources 0o e e e e 36
13.3 Files . . . o o 37

iii

1 Introduction

The parallelization of existing sequential applications for distributed memory parallel sys-
tems is often not a trivial task, as parallelization for this type of machines is by its nature
not a local operation.

TOP? is a tool suite that aids users of such parallel systems in porting existing sequential
applications by supporting the separation of compute-intensive kernels of an application
from the existing sequential code and providing a development environment for the par-
allelization of these code segments. Thus, the parallelization of big applications can be
broken up into several smaller tasks that may, in a way, be regarded as local optimization
steps. In this scenario, the sequential and the parallel code are run simultaneously as a
distributed application on both systems and automatically exchange context data between
both components. Main features in this process are the provision of cross-domain message
passing for the automatic distribution of program data from the sequential machine to the
distributed memory system and the ability of on-line debugging of the parallelized code.
The input language of TOP? is Fortran 77.

The data distribution features of TOP? are a subset of those defined in HPF Fortran and
thus especially support algorithms on regular data structures exploiting data parallelism in
the context of SPMD programming. Logical processor arrays with up to seven dimensions
are the basic vehicle for data distribution specifications in this scenario. Fortran data
arrays may be distributed by distributing each array dimension onto the corresponding
dimension of a processor array. The distribution scheme may be ”block”, ”cyclic”, or
"replicate” (undistributed) in each dimension. The logical processor arrays are mapped
onto the physical processing nodes of the target architecture which implicitely distributes
the data onto the nodes. Intrinsic functions for index calculations on distributed arrays
are provided in order to facilitate the development of the parallel SPMD code.

TOP? consists of two major components, an interactive annotator and a code generator.
The annotator supports the user in defining the proper context (input and output vari-
ables) of the parallelizable program segment through interprocedural data flow analysis
and allows the definition of data distribution strategies. The interactive dialog of the
annotator is based on the X Window System. The code generator creates source code
for the sequential and the parallel machine that reflects the user-defined data distribution
and contains all necessary functions to do the cross-domain message passing for input and
output data (Figure 1).

The annotator and the code generator implement two phases of TOP2. The information
exchange between these phases is realized by means of source code directives. The an-
notator inserts the directives into the given sequential Fortran program according to its
data flow analysis and the user interaction. The code generator reads the directives and
takes them as a basis for the following code generation phase. As the two phases are only
loosely coupled to each other, it is also possible to separate them and e.g. run the code
generation phase several times, if changes to the source code directives have been made
manually.

At present, two implementations of TOP? exist:

G Code Generation
N TOP 2

Interactive Annotated
Fortran 77 ‘[Annotator Fortran 77 { Code Generator]

i

Parallel
Execution Skeleton ™ G
Network Y,
Sequential <> Parallel
Program Program

NFS

Figure 1: TOP? Structure

e At KFA Juelich, TOP? is installed on a Sun workstation representing a typical
sequential machine and on an Intel Paragon distributed memory system. This is the
implementation that is referred to in the main part of this document.

e A prototype implementation of TOP? for a Cray T3D system exists at Cray Research
Inc. in Eagan/Minnesota. This implementation is referred to in section 13 of this

User’s Guide.

In the current version of TOP?, two implementations of the cross-domain message passing
exist that may be selected through an option. In the first implementation, data is directly
passed via network, using UNIX sockets for communication, in the second, NFS shared
files are used for data exchange. Both implementations provide essentially the same func-
tionality, however, differ in performance and portability. Details of the specific installation
are described in the following.

2 Quick Start for Impatient Users

To use the current implementation of TOP? on the Sun workstation cluster and the
Paragon system at KFA (zam127.zam.kfa-juelich.de and paragon.zam.kfa-juelich.de) ob-
serve the following guidelines (deviations from this procedure related to the TOP? imple-
mentation for Cray T3D are described in section 13).

1. Select an existing sequential application for parallelization on the Paragon System.
Assure that it runs correctly on the Sun workstation and that all required input data

and pre- and postprocessing procedures exist on the workstation.

. If possible, establish an NFS shared file system between Sun and Paragon or use
an existing one. Create a new directory (called working directory in the following)
for your application in this file system and make sure that it has read and write
permission on both machines. Make this directory the current directory on both
machines for all following steps. (If it is not possible to use an NFS mounted file
system on both machines, use two distinct directories on Sun and Paragon. In this
case, ftp will have to be used to transport the generated parallel code to the Paragon,
and only the network version of the cross-domain message passing may be used for
data exchange.)

. Copy the source of your application into the working directory and, if necessary, also
all data or library files that are required for compilation and execution.

. Make sure that the environment variable TOP2HOME has already been set for you by
the system administrator or set it yourself to /usr/local/top2on Sun and Paragon.

. From $TOP2HOME/resources copy the X Window resource file Top2 into the working
directory (Sun only).

. Now execute TOP? by typing top2 on the Sun command line to initiate the anno-
tation and code generation phase. During the interaction with TOP? execute the
following steps:

(a) Use Read Programin the System submenu to read the source of your applica-
tion.

(b) Click Load Unit to select that program unit that forms the top procedure of
the program segment that you are about to parallelize.

(¢) From the Annotation submenu select Distributions to determine and possi-
bly correct or optimize the set of input and output variables. To move a variable
from one list to another click on the variable and select one of the buttons IN,
INOUT, or OUT.

(d) In the Distributions dialog click DIST/INOUT to toggle between the definition
of input/output and distribution specifications. To define the distribution spec-
ifications of a variable click on the variable and select the desired dimension(s)
and data distribution scheme(s).

(e) If data distribution is to be done onto user-defined logical processor arrays
rather than onto the one-dimensional default array, use the function Processor
Arrays in the Annotation submenu to define the name and dimensionality of
all processor arrays (use Fortran syntax for the dimensions). Use the ONTO
clause in the Distributions dialog to refer to defined processor arrays.

(f) The dimensions of processor arrays may be made dependant on symbolic con-
stants. If this is desired, use the names of existing or yet undefined symbolic
constants in the processor array dimensions. Specific values for new symbolic
constants may be provided via a popup dialog window. The value of exist-
ing symbolic constants may be changed with the Constants function in the
Annotation submenu.

(g) Use the Options item in the Annotation submenu to switch on debugging, if
desired. First call and Last call may be used to switch on parallelization

10.

11.

12.

13.

(and debugging) for only the specified number of subroutine calls (0 means all

calls).

(h) After having made all definitions for input/output, data distribution, and de-
bugging, use one of the functions MP Transform or NFS Transform in the
System submenu to activate the code generation phase. Here, MP stands for
Message Passing via network and NFS means data exchange via NFS shared
files. For performance reasons and for ease of use, the network communication
method should be preferred. Either of these functions will create two source
files, one for the modified sequential program and one for the new parallel pro-
gram. A popup window will inform you about the names of the created source
files and eventually about errors that occured during code generation.

(i) Now quit TOP? to proceed with the following steps.

. At this point TOP? has generated a sequential program and a parallel program

skeleton. The parallel program skeleton contains all code required to do the data
distribution and cross-domain message passing. The parallelized program kernel,
however, has to be inserted manually. Use the comments in the generated code as a
guideline, as to where to insert the parallel code.

. Compile the generated sequential program part with the command top2.makes on

the Sun workstation.

. Compile the parallel program part with the command top2.makep either on the Sun

workstation (cross-compilation) or on Paragon.

The commands top2.makes and top2.makep implement only basic compiler options
for the compilation of the sequential and parallel code. If this is not sufficient, copy
the makefile $TOP2HOME\1ib\makefile_sp into the working directory and modify it
according to your needs. The header of the makefile contains information on possible
options and targets for compilation.

The parallelized program may now be executed as a distributed application on the
Sun workstation and on Paragon. Use standard UNIX commands to start the se-
quential part on the Sun and the pexec procedure on the Paragon to start the parallel
program part (don’t forget to specify the appropriate number of nodes in the pexec
call). Note that the application must be started from the NFS mounted working
directory on both machines, if NF'S is used as the data transport mechanism.

If debugging is switched on through the appropriate source code directives, you will
see messages during program execution on your Sun workstation, if the results of
the parallelized program fragment are different between Sun and Paragon (with a
certain threshold); otherwise execution will complete silently.

If, after initial tests, you want to make changes to the existing application (e.g.
change distribution schemes or processor arrays) you will have to rerun TOP? and
make the desired changes. Note, that previous modifications to the parallel code
fragment will not be lost, if all modifications had been made properly in the marked
areas. Changes to the generated sequential code or outside the marked areas in the
parallel code, however, will be lost and should therefore be avoided.

3 The TOP? Annotator

The interactive annotator performs an interprocedural data flow analysis and supports the
user in defining the set of input and output variables for the parallel program segment.
Secondly, it allows to interactively specify data distribution properties for these variables.

In principle, the interprocedural data flow analysis can be run unattended by the user
and will produce correct results, as interprocedural and aliasing effects are taken into
account during analysis. In some cases, however, it will be useful to interactively optimize
the results of the analysis. This may be the case for array references, if conservative
assumptions have been made during the analysis due to the lack of complete def-use and
array kill information. An optimization (i.e. reduction in size) of the set of input and
output variables will generally lead to better program performance during execution of
the generated code, since less data has to be transferred between the sequential and the
parallel machine. It is an error, however, to delete variables from the input or output lists
that are actually used as input or output, respectively. Variables that are used for the
dimensioning of adjustable dimensioned arrays e.g. need to be declared in the input list.

The second task of the annotator, the definition of data distribution, is always a user-
driven interactive process. The TOP? annotator provides dialogs to easily select arrays
in the input/output set and define distribution strategies for them. Furthermore, logical
processor arrays can be defined as the target of such data distributions.

Another interactively supported action is the definition of symbolic constants that may
be used in the specification of processor arrays and can help to make the program code
mostly independent of a specific choice of the number of physical processors.

3.1 Interactive functions

In the following, all functions of the annotator will be shortly described:

Submenu ”System”:

Load Unit: Load a program unit into TOP? for further processing. This call must be
preceeded by a call to Read Programin either the same session or a previous session.

Read Program: Read the source of a Fortran program from a file and convert it into
TOP? internal representation. The source program must be given as a single file.
For later processing the program is split up into individual program units which are
stored in the subdirectory units of the working directory.

NFS Transform: Initiate the code generation phase of TOP? with data communication
being implemented via NFS shared files. This function produces a Fortran program
annotated with directives and calls the TOP? code generator which will generate a
modified sequential program and a parallel program skeleton out of the annotated
program. The naming conventions for the generated source files are as follows:
name.top2.f is the name of the annotated program, name.seq.f is the name of

the sequential and name.par.f the name of the parallel program generated by the
code generator. In all cases name stands for the name of the original input program.
Details of the code generation phase are described in section 4.

MP Transform: This function is equivalent to the function NFS Transform, with the
only exception that MP Transform generates code that implements data communi-
cation via network, rather than via NFS shared files.

Quit: Exit TOP?.

Submenu ” Annotation”:

Processor Arrays: Define logical processor arrays for later use in data distribution
specifications through a popup dialog window. The dialog allows to either enter the
specification of new processor arrays or modify those of existing ones. Processor
arrays may be one- to seven-dimensional. The processor array specifications may
be entered by the user in Fortran-like syntax where the dimensions may be either
constants or symbolic constants (e.g. PROC(12,ip,ir)). If processor array dimen-
sions are defined through symbolic constants, a separate popup dialog allows to enter
specific values for these constants. During execution of the parallelized application,
each processor array is mapped to the physically available processors. Therefore, the
size of all processor arrays (product of all dimensions) must be identical and must
match the number of processors allocated during program execution.

Constants: Modify the value of already existing symbolic constants. Symbolic constants
are implemented through Fortran PARAMETER statements.

Distributions: Modify the input/output lists generated by the annotator and define
data distribution strategies for arrays in these lists. The button DIST/INOUT in
the popup dialog window allows to toggle between these two functions. If the in-
put/output function is activated, variables and arrays may be moved from one list
to another by clicking on them and selecting the desired list. If the distribution
function is activated, distributions may be defined by clicking on the variable and
selecting the desired distribution policy in the appearing popup window. Block,
cyclic, or replicated (”#”) distribution may be specified for each of the array dimen-
sions. In this dialog the ONTO clause may be used to define distribution onto an
already defined processor array. If this feature is used, the number of the processor
array dimensions must match the number of those array dimensions with distribution
policy other than ”replicate”.

If multiple arrays are selected in the dialog window one after the other, the following
selection of the distribution strategy and the ONTO clause will be applied equally to
all selected arrays. This mode of operation may be useful, if a number of arrays
require identical data distributions.

Options: Switch on debugging. First call and Last call may be used to switch on
parallelization (and debugging) for only the specified number of subroutine calls (0
means all calls). The latter functions may be used to reduce the debugging overhead
and the overhead for distributed processing of the application, if it is known e.g.
that an error that is to be analyzed occurs only after a certain number of calls to
the parallelized subroutine.

3.2 Resources

The TOP? annotator uses an X Window resource file named Top2 that defines several
properties of dialog items. It is recommended that this resource file be copied from
$TOP2HOME/resources into the working directory to assure that it is read during start-up
of TOP?, or that the standard X Window function xrdb be used to merge the contents
of the file into the existing X server’s resource database. If desired, user-specific changes
may be applied to this file.

4 TOP? Code Generator

The TOP? code generator converts the source directives inserted into the input program
into a sequential program and a parallel program skeleton. The sequential program is
complete in that it may be compiled without further changes. The parallel program
skeleton, however, needs to be completed by the programmer, as it doesn’t yet contain the
code for the parallel program segment. Details on how the generated code is structured
and what modifications are to be made by the user are given in section 8.

The code generator is normally called by the annotator, but may as well be called directly
from the command line. It takes some options that may either be specified on the command
line or be provided through a resource file and the name of the annotated input file.
Modifications applied to the resource file will be honored independent on how the code

generator was called, command line options may, however, only be set, if it is called from
the command line.

4.1 Command Line Call

If the code generator is called from the command line, the general syntax of the call is as
follows:

top2pp [options] filename

where filename is the name of the annotated Fortran program and options may
be of the following:

-elewci] or —d[ewci]

-e switches on, -d switches off messages of class e (error), w (warning), c
(caution), i (informative). The default is -eewci.

-llalcli]

-1 defines the language dialect to be used: a (ANSI), ¢ (CRAY), i (IBM).
This switch is used for the proper handling of data types in declarations and
cross-domain message passing. For byte-oriented machines like workstations
the switch should be set to -1i (default for the Sun implementation).

-clclx]

-c defines the communication method to be used for data exchange between
the sequential and the parallel program segment: ¢ denotes communication via
NFS shared files and x cross-domain message passing via network (UNIX socket
communication). In both cases, XDR routines are used for data conversion.
The default is -cx.

4.2 Resources

The resource file of the code generator allows to define user-specific options, even if
the code generator is called by the annotator. A default resource file is provided in
$TOP2HOME/resources, named top2pprc. This file may be copied into a user-owned di-
rectory and modified according to the user’s needs. In order to activate a resource file
other than the default file, the environment variable TOP2PPRC has to be set to the new
filename (absolute or relative path name including the file name).

As the code generator is not an X Window based application, the resource file is not X
Window specific and may not be merged into the X server resource data base. The general
syntax of entries in the resource file is as follows:

resourcename resourcevalue

The following name/value pairs are currently recognized:

N$PROC number

Define a default number of processing nodes for the parallel program for use
in default processor arrays (default: 4).

SEQ_IN_FILE filename

Name prefix for the files containing the input data for the parallel program
segment during cross-domain communication. This name prefix is used by the
sequential program segment to write the ”input” data. For each processing
node the file prefix is suffixed with the node number. ”IN.” is the default.

PAR_IN_FILE filename

Name prefix for the files containing the input data for the parallel program
segment during cross-domain communication. This name prefix is used by
the parallel program segment to read the ”input” data. For each processing
node the file prefix is suffixed with the node number. For communication via
NFS shared files, this file name should be identical to the name defined under
SEQ_IN_FILE.”IN.” is the default.

SEQ_OUT_FILE filename

Name prefix for the files containing the output data of the parallel program
segment during cross-domain communication. This name prefix is used by the
sequential program segment to read the "output” data. For each processing
node the file prefix is suffixed with the node number. "0UT.” is the default.

PAR_QUT_FILE filename

Name prefix for the files containing the output data of the parallel program
segment during cross-domain communication. This name prefix is used by the
parallel program segment to write the "output” data. For each processing
node the file prefix is suffixed with the node number. For communication via
NFS shared files, this file name should be identical to the name defined under
SEQ_OUT_FILE. "0UT.” is the default.

MSG_FILE filename

Name of the file receiving all messages of the code generator. Default is stdout.

MSG_ERROR boolean
MSG_WARNING boolean
MSG_CAUTION boolean
MSG_INFO boolean

Switch on or off messages of severity levels Error to Informative. Default is
true for all messages.

PRETTY_PRINTER boolean

Switch on or off the usage of the Fortran pretty printer for all automatically
generated code. Default is true.

P_MACHINE netname

Define the name of the parallel machine in the network. The default is Paragon.

COMMUNICATION method

Define the communication method for the exchange of data between the se-
quential and the parallel machine. Method may be either NETWORK (default)
or NFS.

CMD_PORT number

Define the port number for initial communication setup, if the selected com-
munication method is NETWORK. Note that this port is only used for commu-
nication setup, the actual data exchange is realized via dynamically allocated
ports. Number must be an integer in the range 5000 < number < 16383. The
default is 5011.

5 Source Code Directives

Source code directives are used for communication between the TOP? annotator and the
code generator. Normally there will be no need for the user to directly insert or modify
directives, even though this is well possible. In the following, syntax and semantics of all
directives will be described.

The general format of TOP? directives is
CKFA$ keyword [value]

Each directive starts on a new line at column one. If necessary, directives may be continued
on subsequent lines in the format

CKFA$* continued_text,

however, all keywords must appear on the first line. TOP? source code directives are not
case sensitive.

The following keyword/value pairs are currently recognized by the code generator:
IN variable_list

OUT variable_list
INQUT variable_list

These directives define variables and arrays that are input or output for the
parallel program segment. Variable_list is a blank- or comma-separated list of
variable names.

10

Example:

CKFA$ IN A, SUM, CARRAY

PROCESSORS procspec_list

This directive defines one- or multi-dimensional logical processor arrays that
can be used for data distribution. Procspec_list is a blank- or comma-separated
list of processor specifications. Each processor specification has the form
procname(dim[,dim ...]), where procname is the name of the processor array
and dim is a dimension expression consisting of either a constant or a symbolic
constant (Fortran PARAMETER constant). A maximum of seven dimensions may
be specified for each processor array. The size of each processor array (the
product of all dimensions) directly determines the number of compute nodes
used during execution. If more than one processor array is defined, the sizes
of all processor arrays must be equal.

Example:

CKFA$ PROCESSORS P(2,IP), Q(16), RS(2,2,4)

DISTRIBUTE distspec_list

The distribute directive defines the data distribution policy for one or more
arrays. Distspec_list is a list of distribution specifications, each defining the
distribution policy for one array. The format of each distspec item is defined
as follows:

distspec := arrayspec [ontoclause]
arrayspec := arrayname(dspec[,dspec ...])
dspec := BLOCK | B | CYCLIC | C | =*
ontoclause := ONTO procname

”B” and ”C” are abbreviations for ”BLOCK” and ”CYCLIC”, respectively, ”*”
means replication in that dimension. Note that the ONTO clause may only
be missing, if distribution is to be done in only one dimension onto the one-
dimensional default processor array. More generally, the number of distributed
array dimensions (those different from ”*”) must match exactly the number of
dimensions of the corresponding processor array.

Examples:

CKFA$ DISTRIBUTE A(BLOCK,CYCLIC,*) ONTO P
CKFA$ DISTRIBUTE B(*,B,*) ONTO Q, D(C) ONTO Q
CKFA$ DISTRIBUTE CARRAY(BLOCK)

N$PROC number

In this directive number defines the number of processing nodes used for data
distribution; this is also the size of the one-dimensional default processor array

11

Block Distribution

Cyclic Distribution

REAL A(13) REAL A(13)
CKFA$ PROCESSORS P(4) CKFAS PROCESSORS P(4)

CKFA$ DISTRIBUTE A(BLOCK) ONTO P CKFA$ DISTRIBUTE A(CYCLIC) ONTO P
1120304 V617 8] 9r10i11i12|130 1,5, 9113] 2} 6,10 |3/ 11 4,812, |
P(1) P(2) P@3) P(4) P(1) P(2) P@3) P(4)

REAL A(7) REAL A(7)
CKFA$ PROCESSORS P(5) CKFA$ PROCESSORS P(5)
CKFA$ DISTRIBUTE A(BLOCK) ONTO P CKFA$ DISTRIBUTE A(CYCLIC) ONTO P
|1:2 tafsts | ! | 1;@|z;7 |4: 5 | |
P(1) P(2) P@) P(4) P(5) P(1) P(2) P(3) P(4) P(5)

Figure 2: Example - Block and Cyclic Distribution

that is used if no ONTO clause is specified. Note that the specified number
must be consistent with the size of all defined processor arrays. Number may
be either a constant or a symbolic constant. If the N$PROC directive is not
specified, the number of processing nodes is computed from the size of any of
the logical processor arrays. If no PROCESSORS directive is defined, a TOP?
specific default is chosen (compare section 4.2).

Example:

CKFA$ N$PROC 32

DEBUG

This directive switches on debugging.

STARTSTOP start [stop]

This directive allows to restrict parallelization of the selected parallel program
segment to a specific number of calls of the parallelized subroutine. Start is
an integer number specifying the first call that is to be executed in parallel,
stop specifies the call after which processing is to be stopped. Before start is
reached, processing of the application is merely sequential, if stop is reached,
processing halts. A value of 0 for start means that parallel processing is started
right from the beginning (default), a value of 0 for stop means that processing
is not to be halted before the completion of the program (default).

12

6 Details of Data Distribution

For the development of the parallel code it will be necessary to precisely know how data
items are distributed onto the physical processing nodes. Two important basic terms
in this respect are ”block” and ”cyclic” distribution. Fig. 2 gives examples of these
distribution schemes for one-dimensional arrays. From the performance point of view, it
is important to notice that block distribution may lead to significant load imbalance, if
the array dimensions are not divisible by the number of blocks. Cyclic distribution, on
the other hand, can lead to an imbalance of one element per block at maximum.

The extension of one-dimensional distributions to multi-dimensional distributions is ob-
tained by distributing each array dimension onto one dimension of a multi-dimensional
processor array, where the number of distributed array dimensions must match the num-
ber of processor array dimensions. The processor array is then mapped onto the physical
compute nodes in column major order. Fig. 3 gives an example of a two-dimensional
distribution for a three-dimensional array.

For most applications it will not be necessary to directly refer to the formulae given below,
since all basic index calculations for distributed arrays can be realized by means of the
appropriate intrinsic functions that are available at run-time in the parallel code (see
section 7 for details).

In the following, details of processor mappings and index calculations for multi-dimensional
distributions will be given.

6.1 Mapping Logical Processor Arrays to Physical Processors

Let P := {(r1,72,...,75) | 1 <r; < p;} be an s-dimensional processor array with

1) n e Hp

being the number of physical processing nodes. p; is called the size of dimension ¢ of the
processor array.

Let (r1,72,...,7s) € P be a logical processor with respect to processor array P. The
mapping Pp : P — [0,...,n — 1] with

s

2) Po(riy.r) = 3 (i 1) [o
k=1

=1

defines the column major ordering of logical processors in P onto the physical processors.

The inverse Pp : [0,...,n — 1] — P, mapping physical processors to logical processors in
processor array P, is given by Pp(n) = (rq,...,7s) with
1
nmod [] px
(3) ri=|——=— |41, 1<i<s.
I1 P&
k=1

13

' N 1 n 2
REAL A(100,75,133) (1,4) node 24
CKFAS PROCESSORS P(8,5) /(1,3> node 16
CKFAS DISTRIBUTE A(B,*,B) ONTO P
/(1,2) node 8 (34) =
.1 node 0 / node 26
(1stdim
Processor (3,4) (= Node 26): o an node 0
2,1) node 1
REAL A’ (13,75,27) @1) node 2
‘ (85) =
a’(1, 1, 1) = a(27, 1, 82) @1 node 3 node 39
a’(13, 1, 1) = a(39, 1, 82)
a’(1,75, 1) = a(27,75, 82) (5.1) node 4 /
a’(13,75, 1) = a(39,75, 82) ! d, =27
a’(1, 1,27) = a(27, 1,108) d‘=131 6.1) node 5
a’(13, 1,27) = a(39, 1,108)
a’(1,75,27) = a(27,75,108) @) node 6 /
a’(13,75,27) = a(39,75,108) (8.1) node 7 3rd dim.
—
2nd dim.
-)
d, =75

Figure 3: Example - Block Distribution of 3-dimensional Array

6.2 Mapping Array Elements to Logical Processors

Let A := {(a1,0a2,...,am) | li < a; < u;} be (the index space of) an m-dimensional Fortran
data array with d; := u; — [; + 1 ({; lower bound, u; upper bound, d; size of dimension 7).

Let P be an s-dimensional processor array with s < m.

The m-tuple Dﬁ = (91,92, - --,9m) is called a distribution of A with respect to P if the
following holds:
g; € {block, cyclic, replicate }

and
g; 7 replicate, for exactly s elements.

For the following, those elements g; # replicate will be numbered g;,,9,,,.-.,9;,, such
that g;, corresponds to dimension & of processor array P.

Dﬁ defines a mapping Dﬁ : A — P x A’ of elements of the undistributed array A to
elements of the distributed array A’ on logical processor (r1,...,7,) € P with

Dﬁ(al,...,am) = (Pl ey Tsy @Yy e ey G-

Itis A :={(al,...,a,) | Il <a. <u!}and d; :=u, — Il + 1 with

(4) g — { [g—ﬂ if g; # replicate

d; else

where pj, corresponds to element g; = g, .

In TOP? the lower bound of any distributed array A’ is always identical to the lower bound
of the corresponding undistributed array A, i.e.

(5) =1
and thus
(6) ugzdg—l—li—l.

14

The index mapping of elements of A to elements of A’ (i.e. the mapping of global array
indices to local indices) is given by

((a; — ;) mod dl) + 1! if g; = block

(7) a; = [(ai = L)/pr] + 1 if g; = cyclic
a; if g; = replicate
The logical processor number (r1,...,7s) is given by
(8) =1 Mas — 1) d5 | +1 if g;, = block
((aj, — 1) mod pg) + 1 if g;, = cyclic

The inverse 5? : Px A" — A, mapping local indices to global indices, is given by
Do ! 'y = ith
p(r1, .. rs,al, ... al) = (a1,...,am) Wi

dilre — 1)+ (a; = 1))+ 1; if g; = block
(ag K

—Mpe+ (re — 1)+ 1, if g; = cyclic
al if g; = replicate

(9) a; =

where k corresponds to ¢ = jg.

7 Intrinsic Functions for Index Calculations on Distributed
Arrays

TOP? supports the partial parallelization of big applications by providing a mechanism
for the separation of parallelizable code segments from the sequential code. This includes
an easy way to experiment with various data distribution schemes via interactive user
directives. As, however, the resulting parallel SPMD code has to be provided manually by
the user, it may be rather intricate to implement the index calculations for the addressing
of distributed arrays, if complicated distribution schemes have been used in the interactive
phase of TOP?.

In the following, a set of intrinsic functions will be described that facilitate index calcu-
lations on distributed arrays. This set of routines also includes functions for the inquiry
of array, processor array, or distribution properties in the parallel code. The described
functions are ’intrinsic’ in that they are directly related to the distribution scheme chosen
during the interactive phase of TOP?, i.e. information from this phase is automatically
passed to the intrinsic functions.

In order to allow the utilization of the TOP? intrinsic functions even if an application
has been entirely parallelized and ported to the parallel machine (and, thus, should be
independent of TOP?), the implementation of these functions follows a two-level procedure:

e Level-one routines collect all information on arrays, processor arrays, and distri-
butions and store them in an internal data base. As long as TOP? is used, these
routines are automatically called in the parallel program for all relevant distribution
items (compare section 7.3). If the TOP? intrinsics are to be used separate from
TOP?, however, the level-one routines have to be explicitely called in the user code.

15

e Level-one routines return a handle for each array, processor array, and distribution
that is defined. These handles are passed to the level-two routines that implement
the actual index calculations for the thus identified items. Handles may be passed
through a predefined COMMON block /TOP2_XQ5/ within the user code, if TOP?
is used, or through a user-defined COMMON block, if used independently of TOP2.

When used with TOP?, the naming convention for handles is such that TOP? ap-
pends a suffix _phd$ to each processor name (thus a processor array PROC may be
identified through the handle PROC_phd$). Respectively, _ahd$ is appended to each
array name and _dhd$ to the name of each array distributed onto a given processor
array.

7.1 Level-One Intrinsic Functions

Level-one routines define or un-define the size and shape of arrays and processor arrays or
the characteristics of distribution schemes used for the distribution of arrays onto processor
arrays. All arguments described in the following are of type INTEGER.

Define the size and shape of a processor array:

CALL TOP2_DEF_PROC(proc_phd$,dim,d)

proc_phd$ processor array handle (output)
dim number of dimensions (input)
d 1-D array of size 7 holding the processor

array sizes (input)

Define the size and shape of a Fortran array:

CALL TOP2_DEF_ARRAY(array_ahd$,dim,bounds)

array_ahd$ array handle (output)

dim number of dimensions (input)

bounds 1-D array holding the lower and upper
bounds of the array in the form
lowl, highl, low2, high2, ... (input)

Define the distribution of an array onto a processor array:

CALL TOP2_DEF_DIST(dist_dhd$,proc_phd$,array_ahd$,dim,d)
dist_dhd$ distribution handle (output)

proc_phd$ processor array handle (input)
array_ahd$ array handle (input)

16

dim number of dimensions (input)
d 1-D array of size 7 holding the distribution
characteristics (input):
0 = replicate (undistributed)
1 = block
2 = cyclic

Undefine one or all defined processor array(s), i.e. release the processor array handle(s):

CALL TOP2_UNDEF_PROC (proc_phd$)

proc_phd$ processor array handle,
if specified as -1 then all currently
assigned processor array handles are
released (input)

Undefine one or all defined Fortran array(s), i.e. release the array handle(s):

CALL TOP2_UNDEF_ARRAY (array_ahd$)

array_ahd$ array handle,
if specified as -1 then all currently
assigned array handles are released (input)

Undefine one or all defined array distribution(s), i.e. release the distribution handle(s):

CALL TOP2_UNDEF_DIST(dist_dhd$)

dist_dhd$ distribution handle,
if specified as -1 then all currently
assigned distribution handles are released (input)

7.2 Level-Two Intrinsic Functions

Level-two routines implement index calculations and inquiry functions for items defined
through level-one routines and identified through the appropriate handle. In the following,
the term global with respect to indices denotes indices in the undistributed array as existing
in the sequential program, the term local, on the other hand, denotes compute node
specific indices of a distributed array. All arguments described in the following are of type

INTEGER.

17

Compute the physical node number of the owner of an array element identified by its
global array indices:

CALL TOP2_GET_OWNER(dist_dhd$,indx,owner)

dist_dhd$ distribution handle of distributed array (input)
indx 1-D array holding the global array indices (input)
owner physical node number of owner (output)

Compute the local indices of a distributed array from its global indices:

CALL TOP2_GET_LOCAL(dist_dhd$,gx,1x)

dist_dhd$ distribution handle of distributed array (input)
gx 1-D array holding the global array indices (input)
1x 1-D array taking the local array indices (output)

Compute the global indices from the local indices of an array element for a given owner:

CALL TOP2_GET_GLOBAL(dist_dhd$,owner,lx,gx)

dist_dhd$ distribution handle of distributed array (input)
owner physical node number of owner (input)

1x 1-D array taking the local array indices (input)

gx 1-D array holding the global array indices (output)

Compute the range of global indices of an array section owned by a given owner:

CALL TOP2_GET_RANGE(dist_dhd$,owner,low,high,inc)

dist_dhd$ distribution handle of distributed array (input)

owner physical node number of owner (input)

low 1-D array taking the lower bounds of the global
array indices in each dimension (output)

high 1-D array taking the upper bounds of the global
array indices in each dimension (output)

inc 1-D array taking the increment of the global

array indices in each dimension (for cyclic
distribution) (output)

18

Compute the size and shape of a local array section for a given owner (this results in the
actually used array elements, not the declared dimensions of the local array):

CALL TOP2_GET_SHAPE(dist_dhd$,owner,low,high)

dist_dhd$ distribution handle of distributed array (input)

owner physical node number of owner (input)

low 1-D array taking the lower bounds of the local
array indices in each dimension (output)

high 1-D array taking the upper bounds of the local

array indices in each dimension (output)

Compute the logical processor array element indices in a processor array (corresponding
to a given processor handle) from the physical node number:

CALL TOP2_GET_PROC(proc_phd$,node,indx)

proc_phd$ processor array handle (input)
node physical node number (input)
indx 1-D array taking the processor array indices (output)

Compute the physical node number from the processor array indices of a given logical

processor array:

CALL TOP2_GET_NODE(proc_phd$,indx,node)

proc_phd$ processor array handle (input)
indx 1-D array holding the processor array indices (input)
node physical node number (output)

Compute all physical node numbers for a given logical processor array and store them in
an array conformant in size and shape to the processor array:

CALL TOP2_GET_ALLNODES (proc_phd$,nodes)
proc_phd$ processor array handle (input)

nodes n-D array taking the node numbers for the given
processor array (output)

Compute the size and shape of a logical processor array as defined in a previous call to
TOP2_DEF_PROC:

19

CALL TOP2_GET_PSHAPE(proc_phd$,dim,indx)

proc_phd$ processor array handle (input)
dim processor array dimension (output)
indx 1-D array taking the processor array size for each

dimension (output)

Compute the global size and shape of an undistributed array as defined in a previous call
to TOP2_DEF_ARRAY:

CALL TOP2_GET_ARRSHAPE(arr_ahd$,dim,low,high)

arr_ahd$ array handle (input)
dim array dimension (output)
low 1-D array taking the array’s lower bounds for each

dimension (output)
high 1-D array taking the array’s upper bounds for each
dimension (output)

Compute the characteristics of a distribution as defined in a previous call to TOP2_DEF_DIST:

CALL TOP2_GET_DIST(dist_dhd$,proc_phd$,arr_ahd$,dim,dist)

dist_dhd$ distribution handle (input)

proc_phd$ processor handle (output)

arr_ahd$ array handle (output)

dim number of dimensions of the distribution (output)

dist 1-D array taking the distribution specifier for each
dimension: 0 = replicate, 1 = block, 2 = cyclic.
(output)

7.3 Example

The following section gives a short example for the use of the TOP? intrinsic functions in a
parallel program. As denoted below, part of the code stems from the interactive annotation
phase of TOP?, some parts are automatically generated during the code generation phase
of TOP?, and some have to be provided by the user (compare section 8 for details on the
structure of the generated code).

The following example assumes three directives to be created during the interactive phase

of TOP2:

20

CKFA$ PROCESSORS P(IP1,IP2)
CKFA$ INOUT ARRAY
CKFA$ DISTRIBUTE ARRAY(BLOCK,CYCLIC,*) ONTO P

The parallel main program produced during the code generation phase of TOP? will
contain all code required for the definition of the distributed arrays and the involved
processor arrays. All handles of these items will be declared and defined, and will be passed
in a COMMON block named /TOP2_XQ5/ for use in the user-provided parallel subroutine
(Note that the one-dimensional default processor array P$PROC and its corresponding
processor array handle P$PROC_phd$ are always defined):

PROGRAM PARMAIN

COMMON /TOP2_XQ5/ P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$
SAVE /TOP2_XQ5/

C
C --- Define processor descriptors ---
C
P$PROC_$pd$ (1) = 1
P$PROC_$pd$(2) = 8
C
P_pd(1) = 2
P_pd(2) = 4
P_pd(3) = 2

CALL TOP2_DEF_PROC(P$PROC_phd$, P$PROC_$pd$(1), P$PROC_pd(2))
CALL TOP2_DEF_PROC(P_phd$, P_$pd$(1), P_$pd$(2))

CALL TOP2_DEF_ARRAY(ARRAY_ahd$, ARRAY_$ad$(4), ARRAY_$ad$(5))
CALL TOP2_DEF_DIST(ARRAY_dhd$, P_phd$, ARRAY_ahd$, ARRAY_$dd$(1),
1 ARRAY_dd(2))

CALL PARSUB(ARRAY)

The generated parallel subroutine skeleton contains code that makes the handles of all
distribution items available in COMMON /TOP2_XQ5/. Declarations that might be required
for arguments to any of the TOP? intrinsic functions, however, must be specified in the
user-specific code section:

SUBROUTINE PARSUB(ARRAY)

PARAMETER (N1=100, N2=100, N3=10)

21

Q

QO

Q QO

QO QO

REAL*8 ARRAY((N1-1+4)/4,(N2-1+2)/2,N3)

—--- Common block for address intrinsics ---

COMMON /TOP2_XQ5/ P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$
SAVE /TOP2_XQ5/
INTEGER P$PROC_phd$, P_phd$, ARRAY_dhd$, ARRAY_ahd$

--- PARSUB: --- Make all your code changes below this line ---

integer low(7),high(7) ,owner,indx(7),1x(7)

Use TOP2 intrinsics to print global array element
ARRAY(73,25,3) on the local node

indx(1) = 73
indx(2) = 25
indx(3) = 3

call top2_get_owner (ARRAY_dhd$,indx,owner)

if (owner .eq. mynode()) then
call top2_get_local (ARRAY_dhd$,indx,1x)

write(*,*) *ARRAY(73,25,3) = ’, ARRAY(1x(1),1x(2),1x(3))
write(*,*) ’0Owner = ’,owner,’ local = 7, 1x(1),1x(2),1x(3)
endif

Use TOP2_GET_SHAPE to compute the bounds of each array
section on the node

call top2_get_shape(ARRAY_dhd$,mynode(),low,high)

do i = low(1), high(1)
do j = low(2), high(2)
do k = low(3), high(3)
array(i,j,k) = array(i,j,k) + 1.0
enddo
enddo
enddo

The TOP? Generated Code

The source code generated by TOP? is basically structured into two independent com-
ponents, the sequential code, containing practically the entire code from the original

22

(Parallelization of one Subroutine)

Sequential Program Parallel Program
Unchanged
program
parts
Main
program
Distribute
Parallel-
izable
subroutine C
[
Merge
Parallel
subroutine
Unchanged
program
parts

————— Data and Control Flow

Figure 4: Structure of TOP? Generated Code

application, and the parallel code skeleton, containing all declarations required for the
parallelization of the selected program kernel and code for the cross-domain message pass-
ing (Figure 4).

Normally, there will be no need for the user to concern about the generated sequential
code, as it is directly compilable and should not be modified. The parallel code, instead,
will always have to be modified. For the understanding of the principles of operation of

the TOP? generated code, a short description of the structure of the generated sequential
and parallel code is given in the following.

8.1 Code Structure

The main tasks of the TOP? code generator are, first, to cut off the parallelizable program
segment from the sequential program, and, second, to provide for the execution of the
parallel program on the parallel machine. This is achieved by transmitting all input data
from the sequential machine to the parallel machine and by returning the result data back
after execution.

Assuming a principle structure of the original sequential program like the following

program example
call sub(argsl)

call sub(args2)

23

end

subroutine sub(args)
declarations
executable code
end

the modified sequential program would basically look as follows:

program example
c;ii sub(args1)
c;ii sub(args2)
end

subroutine sub_org(args)
declarations
executable code

end

subroutine sub(args)
declarations
count = count+1
if count >= start then
call send_input_data
if (debug) then
call sub_org(args)
call receive_output_data_and_compare
else
call receive_output_data
endif
else
call sub_org(args)
endif
if count = stop then
stop
endif

end

In this code, the original subroutine that is to be parallelized has been cut off by simply
renaming it. This renamed sequential subroutine is called if debugging is switched on in
order to allow a comparison of the original sequential results with those of the parallelized
routine. In both cases, with and without debugging, a modified version of the original
subroutine is called that contains all declarations of the original, but none of its executable
code. Instead, code has been inserted to send the input data to, and receive the output data

24

from the parallel machine. Furthermore, a counter has been established that counts the
number of calls to the subroutine and allows to implement the semantics of the STARTSTOP
directive.

The ”send_input_data” and "receive_output_data” run-time routines perform two
tasks, first, the distribution and merging of the data according to the user-defined distri-
bution strategy and, second, the conversion of the data from the internal data representa-
tion of the sequential machine to that of the parallel machine and vice versa. In order to
allow the implementation of TOP? on a broad class of sequential and parallel machines,
the XDR format (External Data Representation) has been used for data conversion which
is part of the NFS software and, thus, commonly available on a wide range of machines.

The basic structure of the generated parallel code skeleton is as follows:

program main
main_declarations
call receive_input_data
call sub(args)
call send_output_data
end

subroutine sub(args)
sub_declarationsi
C--- user modifications ---
sub_declarations?2
executable parallel code
end

other_subroutines

The parallel main program is responsible for receiving the input data and sending the
output data of the parallel subroutine. It contains declarations (main_declarations)that
are similar to those of the original subroutine except for distributed arrays and for arrays
that are ”adjustably dimensioned” in the original code. Distributed arrays have the array
dimensions adjusted according to the selected data distribution policy and the size of the
target processor arrays. Adjustably dimensioned arrays are implemented through dynamic
memory allocation at run-time. The parallel main program (and also, of course, the
parallel subroutine) is implemented in SPMD programming style, i.e. the communication
with the sequential program is a parallel operation performed on all processing nodes. For
communication via network this means that there is one open bidirectional socket stream
for each compute node. For communication via NFS shared files it means that one NFS
file is used per node and communication direction. Thus, reading and writing input and
output data can be implemented through parallel I/O on all nodes.

The parallel main program normally should not be modified by the user, as modifications
to it will be lost if TOP? is run again, generating a new version of the parallel code.
Contrarily, the parallel subroutine will always have to be modified by the user and, hence,
contains provisions that assure that user-specific changes are kept across calls of TOP2.

25

The parallel subroutine skeleton contains practically all declarations of the original se-
quential subroutine (sub_declarations1); only the dimensions of distributed arrays are
adjusted accordingly. This makes the development of the parallel code easier for the user,
as argument lists, COMMON blocks, and type declarations look the same as in the sequential
program. These automatically generated declarations may be followed by additional user-
written declarations (sub_declarations2) and the executable parallel code. Fur-
thermore, additional subroutines required for the implementation of the parallel algorithm
may be added to the parallel program skeleton (other_subroutines). The latter three
user-provided code regions are in a way protected by TOP? and will be kept across multiple
code generation phases.

8.2 Applying Changes to the Parallel Application

The basic strategy for developing the parallel code from the given sequential program
has been outlined above. If, after some tests, changes are to be applied to the existing
application (e.g. changes to the data distribution strategy or the dimensions of arrays, or
the parallelization of program parts different from the previously selected) certain rules
should be followed. In the following, typical such modifications and how they should be
handled will be described.

Changing the Number of Compute Nodes for Execution

In TOP? programs, the number of compute nodes used for execution will typically influence
the dimensions of distributed arrays and the size of logical processor arrays and, as a
consequence of this, also the distribution pattern of the distributed arrays. It is good
programming practice to make all user code dependant of one or only a few symbolic
constants that define the number of compute nodes used. If the actual value of such a
symbolic constant is to be changed, either of two ways may be chosen:

1. Make the changes via the TOP? annotator’s interactive dialogs. If this alternative
is chosen, it is required that the program units of the application still be stored in
internal format in the "units” directory created by the annotator. This allows to use
the function ”"1oad unit” to read in the program unit together with all annotations
and make the desired changes. Afterwards, the code generation phase has to be
activated again, and, finally, the sequential and parallel program segments have to
be compiled.

2. As changing the number of compute nodes does not change input and output of the
parallel program segment, it is not necessarily required to run the TOP? annotator
to make this type of changes. Instead, the changes can also be made with a text
editor in the annotated Fortran program. The TOP? code generator, however, has
to be run again after these changes in order to assure proper code generation for data
distribution and array dimensioning. Note that, if changes are made using an editor,
the internal representation of the program units stored in the "units” directory will
no longer be consistent with the latest version of the annotated source code.

26

Changing the Distribution Strategy

In principle, both alternatives that have been described above for the modification of
the number of compute nodes also apply to changes of the distribution strategy. As,
however, the latter type of modification is even more incisive than the former one, it is
recommended that these changes always be applied through the TOP? annotator. To
avoid inconsistencies in the directory "units”, no more than one application should be
manipulated at a time and a new ”working directory” should be established for each new
application.

Parallelizing more than one Program Kernel

For the parallelization of entire sequential applications it will in most cases be necessary to
parallelize more than one program kernel. In the current version, TOP? doesn’t actively
support this functionality. It is therefore recommended to proceed in steps in order to
achieve the final goal. A bottom-up strategy should be followed during this process:

1. Parallelize and debug one program kernel as outlined above.

2. Store the developed parallel code (the parallelized subroutine on top and eventually
additional subroutines that are needed to implement the parallel algorithm) in a
separate file.

3. Clear the working directory and start the entire process of TOP? supported par-
allelization again, selecting a new program kernel from the original sequential pro-
gram. Try to find a consistent strategy with respect to data distribution of global
data structures. This will make the assembly of all parallelized program segments
easier and more efficient.

4. After having parallelized all major program kernels, parallelize the remainder of the
code. This should, ideally, be a framework consisting of components providing input
data for the parallel tasks and distributing it, some sort of control flow manager that
calls the parallel program segments, and eventually some postprocessing components
for output.

5. Put all separately parallelized program components together to form a native SPMD
parallel program. If possible, avoid the need for additional run-time support like
dynamic redistribution of data. The now constructed parallel program should be
completely independent of TOP? (perhaps with the only exception of the TOP?
address intrinsic functions).

9 Compilation and Execution of the Distributed Applica-
tion

After having made all modifications to the parallel code, the sequential and the parallel
source code will have to be compiled and then executed.

27

9.1 Compilation

The compilation of the sequential code has to be done on the Sun workstation, the parallel
code can be compiled either on the Sun, using Paragon cross-compilation, or directly on
the Paragon.

For ease of use, two simple procedures are provided that allow compilation with default
compiler options and assure that all required run-time libraries are properly accessed:

top2.makes [name]
top2.makep [name]

top2.makes compiles the TOP? generated sequential code named name.seq.f and must
be called on the Sun. The optional parameter name needs not be specified if only one
application is stored in the working directory (which should be the normal case). Accord-
ingly, top2.makep compiles the parallel code. If it is called on Sun, cross-compilation will
be used, if called on Paragon, native compilation will be used.

If the predefined compiler options used in the above procedures are insufficient, it is rec-
ommended to copy the file makefile_sp from $TOP2HOME/1ib into the working directory
and make the desired changes in the copy. This file is the makefile internally called by
top2.makes and top2.makep, but it may as well be called directly from the command
line:

make -f makefile_sp target PRG=name

name is the name prefix of the sequential or parallel code (without the trailing .seq.f
or .par.f), target may be seq or par to compile the sequential or the parallel code, or
clean to remove all TOP? generated temporary files.

9.2 Execution

After compilation, the sequential and the parallel program segments may be executed. If
nothing else is specified, the names of the executables will be nameseq and namepar. If
the selected communication method is NFS, both executables must be started from the
NFS mounted working directory. For the sequential program normal UNIX commands
may be used on the Sun workstation. On Paragon, the command

pexec namepar -sz size

should be used, where size must correspond to the number of processing nodes specified
in the distribution declarations. For either of the implemented communication methods
(NETWORK or NFS) it is unimportant, which of the two programs is started first. If the se-
lected communication method is NETWORK, however, the parallel program should be started
no later than 90 seconds after the sequential program; otherwise the communication will
be timed out.

28

9.3 Communication via Network

If communication via network has been switched on, either interactively or by means of the
appropriate option of the code generator, all data exchange between the sequential and the
parallel program is handled via UNIX socket communication. Data conversion is realized
through imbedded XDR routines. Normally, the user of TOP? will not have to care about
any technical detail of the network communication, provided that the sequential and the
parallel machine are both connected to the network and the correct network name of the
parallel system is specified in the resource file of the code generator (see section 4.2).

Technically, the parallel program is implemented as a communication server, the sequential
program as a communication client. If the server is not yet running when the client is
started, the client will wait for 90 seconds for the server to reply to the request. After this
delay, the communication will be timed out. If, on the other hand, the server is started
first, it will wait until the client connects. In this case, no timeout is provided. For the first
handshaking between the server and the client, a fixed communication port is used that
may be shared by multiple applications. This port is only used to transmit the identifiers
of dynamically allocated ports that actually carry the communication for each application.

In order to make sure that a client connects to the proper server, the communication is
protected by a password. The password is automatically created during code generation
and is checked up when the communication is established. In rare cases, password mis-
matches might occur, if more than one TOP? application is started right at the same time.
In this case, the application will stop with an error message and should be started once
again. If password mismatches occur frequently, it may be useful to select a new port for
the handshaking. This may be done by specifying the resource CMD_PORT in the resource
file of the code generator as described in section 4.2.

It should be noted that, due to the password mechanism, it is not allowed to combine
sequential and parallel code generated in distinct runs of the code generator.

On Sun workstations, the default limit for open file descriptors is typically 64. This will
also limit the number of open socket streams to 64 or less. If more than 64 nodes are
to be used in the parallel program, it will be necessary to increase the descriptor limit
accordingly. The cshell on Sun workstations provides the command

limit descriptors nnn

that sets the current limit to nnn open descriptors.

9.4 Communication via NFS Files

In the current version of TOP? the communication between Sun and Paragon may also
be realized through NFS shared files. To allow for parallel I/O on Paragon, one file is
used per compute node for each communication direction. If not specified otherwise, the
input data for the parallel program segment is sent in files named IN.nnn, the output is
returned in files named OUT.nnn, where nnn is a three-digit suffix defining the number

29

of the compute node the data is related to. For synchronization between the sequential
and the parallel program segments, two files lock0x0.file and lockOx1.file are used.
Normally, these files will be invisible to the user, if, however, the distributed application
is killed during execution, it may be necessary to explicitly delete them.

9.5 Rerunning the Parallel Program with Existing Data

In certain situations, it may be useful to rerun the parallel program on Paragon without
also rerunning the sequential code and, thus, reuse the already existing input data of a
previous run. This mode of operation is possible if communication is via NFS files, if the
sequential and the parallel program segments have already been run successfully, and if
the input data produced by the sequential program still exist in the NFS files.

To start the parallel program in this mode, it is necessary to manually set up the synchro-
nization files with the commands

rm lockOx0.file
touch lockOx1.file

and then start the parallel program as described above.

This will initialize the synchronization files for one NFS read/write cycle, i.e. the parallel
subroutine will be called exactly once, read the input data, produce new output data, and
then stop. Note, that in this mode of operation no debugging of the output data will take
place even if debugging is switched on, as the parallel program runs unattended by the
sequential program.

9.6 Debugging

If debugging is switched on, the control and data flow during execution of the distributed
application are slightly different from the normal case (Figure 5). With debugging switched
on, not only the parallelized program kernel is executed, but also the original sequential
kernel. After execution, the results of both components (all variables that are declared
to be output) are compared. Integer, Logical, and Character variables are compared for
identity, Real, Double Precision, and Complex variables are compared for equality within
a certain allowed relative absolute error. Approximately two deviating digits are allowed
due to round-off errors.

If the results of the sequential and the parallel program kernel do not match, the TOP?
run-time system will display messages on the Sun display giving the name of the involved
variable (for arrays also the global array index), the node number, and the computed
result of the sequential and the parallel program kernel.

If non-distributed arrays or variables are declared to be output, TOP? checks if all nodes
redundantly return the same result. If not, a warning message is displayed. In either case,

30

Parallelization of one Subroutine
(with debugging)

Sequential Program Parallel Program

Unchanged
program
parts

|

Parallel-
izable
subroutine

Main
program

[

[

[
Data
Parallell
subroutine
Unchanged r
program
parts

Data and Control Flow

Figure 5: Control Flow and Data Flow with Debugging

only the result of node zero is copied back to the sequential program.

10 Example

10.1 Matrix Multiplication

In the following, all major steps required to parallelize a given sequential program for
Paragon using TOP? as a parallelization aid shall be demonstrated in an example. The
example program implements a matrix multiplication and contains the following compo-
nents:

mxm.f: Source of the sequential program.
mxm2.p: Parallel implementation of the matrix multiplication kernel (subroutine MATMUL).

mxm2e.p: Parallel matrix multiplication kernel with imbedded error for demonstration of

debugging.

The sources of the example program components are stored in $TOP2HOME/demo.

Step 1: Annotation and Code Generation

The sequential program contains the subroutines INIT for the initialization of matrices A,
B, and C, MATMUL for the matrix multiplication, and CHKSUM to compute a checksum of result

31

matrix A. The parallel code for subroutine MATMUL implemented in file mxm2.p is based
on a distribution of all three basic arrays A, B, and C in blocks of multiple columns and
requires that the corresponding array dimensions be divisible by the number of processing
nodes.

In the following, a distribution onto 8 nodes is used. Calling the TOP? interactive an-
notator and executing the interactive steps as described in section 2 should result in the
following directives inserted into the sequential program (file mxm.top2.f in the working
directory):

CKFA$ DEBUG
CKFA$ PROCESSORS P(IP)

CKFA$ IN B,C,M,N,L

CKFA$ INOUT A

CKFA$ DISTRIBUTE A(*,BLOCK) ONTO P
CKFA$ DISTRIBUTE B(*,BLOCK) ONTO P
CKFA$ DISTRIBUTE C(*,BLOCK) ONTO P

INTEGER IP
PARAMETER (IP=8)

In the above, the IN and INOUT directives reflect the results of the interprocedural data
flow analysis. B and C are input arrays used as operands for the matrix multiply, the scalar
variables M, N, and L are used for the adjustable dimension of all arrays and also as loop
boundaries and are therefore input to the parallel program kernel. Array A is input and
output, as the initialization values are carried from subroutine INIT into subroutine MATMUL
and the results are transferred back to subroutine CHKSUM. A parallel implementation of
subroutine MATMUL, however, including the initialization of matrix A in the parallel code,
would allow to change the INOUT directive into an OUT directive.

According to the given parallel algorithm, data distribution is done in the second dimension
using BLOCK distribution strategy for all three arrays. The blocks of data are distributed
onto the one-dimensional logical processor array P of size IP. A PARAMETER statement has
been inserted by the TOP? annotator to assign a specific value to the symbolic constant
IP. Note that distribute directives without the ONTO clause would lead to essentially the
same data distribution onto the one-dimensional default processor array. The size of this
array would, however, only implicitely be given through the respective TOP? default, as
no other processor array definitions are present in this code.

During interaction with the TOP? annotator, debugging has been switched on, which
results in the corresponding DEBUG directive.

The resulting generated sequential and parallel code are stored in files mxm.seq.f and
mxm.par.f (see functions "NFS Transform” and "MP Transform” in section 3).

32

Step 2: Implementation of the Parallel Algorithm

The generated sequential code for our example is complete in that it may be compiled
without further changes. The generated parallel code skeleton comprises a main program
and the declarations of the parallel subroutine MATMUL. The main program contains calls
to the cross domain message passing routines receiving the input data and returning the
output data of subroutine MATMUL; it should not be changed. The parallel subroutine
MATMUL is ready to take up the parallel code. Any changes made to the subroutine should
be inserted between the comment line

C --- MATMUL: --- Make all your code changes below this line ---

and the END statement of the subroutine. In our example, it is sufficient to include file
mxm2.p here.

Additional subroutines required for the implementation of the parallel algorithm could be
added after the comment line

C --- Add all new subroutines below this line ---

According to the data distribution policy specified for this example, each node program of
the parallel SPMD code receives one block of columns of matrices A, B, and C. Thus, the
distribution of these arrays determines the loop bounds of the loops in the parallel code.

In the example code, the TOP? intrinsic function TOP2_GET_SHAPE is used to compute the
array bounds of arrays A and B. In cases where explicit computations are to be made de-
pending on the number of processors used, the TOP? intrinsic function TOP2_GET_PSHAPE
has been used.

Step 3: Compilation and Execution

Compilation of the sequential and the parallel program is straightforward now and can be
done by using the procedures

top2.makes
top2.makep

that may both be called on the Sun, if cross-compilation is to be used (otherwise top2.makep
must be called on Paragon).

After this, executables named mxmseq and mxmpar will have been created in the working

directory (compare section 2). On the Sun, the sequential program may be executed by
the command

33

mxmseq

the parallel program may be executed on Paragon using the procedure

pexec mxmpar -sz 8

Note that it is not important which of the two programs is started first. If communication
is via NFS files, however, both must be started from the NFS mounted working directory.

The resulting output on Paragon should look similar to

Starting matmul ...
dclock: 0.7763022799990722
FORTRAN STOP

on Sun the output will be

Calling matmul ...
Starting matmul ...
Result = -10035482.5739520

Note that, due to debugging being switched on, the matrix multiplication kernel will
redundantly be executed on the Sun workstation also.

Step 4: Debugging

To test debugging, the parallel code included in file mxm.par.f may now be deleted again,
and the file mxm2e.p be included instead. The parallel code has to be compiled again and
executed together with the sequential code.

The output obtained on the Sun workstation should now look as follows:

Calling matmul ...

Starting matmul ...

DEBUG: wrong results in variable A of subroutine MATMUL on node 5:
Element(2 94) Seq: -97.714313400000 Par: 8.5000000000000

Result = -10035376.3596386

The index (2,94) of the erroneous array element is global and translates to local index (2,4)
on physical node 5 according to section 6. The correct result for this array element is given
by the term ”Seq: -97.714313400000”, the result received from the parallel program is
instead "Par: 8.5000000000000”.

34

10.2 Jakobi Solver for Poisson Equation

The directory $TOP2HOME/demo contains a second, more comprehensive example for the
solution of Poisson equations with Jakobi relaxations. The example consists of four files
named

jakobi.f
jakobi.top2.f
jakobi.par.f
jakobi.README.

The file jakobi.README contains all information required to run the example with TOP2.

11 Limitations

Currently, some limitations are to be considered when using TOP2. The most important
ones are listed below:

1. TOP? accepts ANSI Fortran 77 programs that may contain language extensions like

e long names

e underscore characters in names

e DO / ENDDO

e lower case source

e *2 *4 *8 etc. notation for type lengths
e IMPLICIT NONE

e NAMELIST

e TASKCOMMON

However,

e array syntax
e pointers

e 128 bit double precision data type
are currently not supported.

2. TOP? requires that the entire input program be contained in one file and all includes
and preprocessor macros be resolved.

3. Normally, TOP? generates all declarations required for the parallelized program seg-
ment. However, currently DATA statements generated in the parallel code segment
for distributed arrays do not reflect the chosen data distribution scheme. Thus they
have to be adjusted manually.

4. Currently, TOP? does not support adjustable dimension CHARACTER arrays as
well as assumed size arrays in the parallel code segment, as the proper dimensions
cannot be determined at run-time.

35

12 TOP? Installation on Sun and Paragon

The current implementation of TOP? requires several components - executable modules
and procedures, run-time libraries, resource files, documentation, and examples for demon-
stration purposes. The diagram in Fig. 6 shows the placement of all TOP? files on Sun
and Paragon, and also those files the user may have to deal with in the working directory.

13 Specific Considerations for the T3D Version in Eagan

Due to the specific situation, some details of the installation and usage of TOP? on the
Cray T3D system at CRI in Eagan differ from the description given in this manual. In
the following, items specific to the T3D version are described.

13.1 Installation

TOP? is installed on T3D system typhoon in directory
/cray/uss/u6/n5006/top2

All files are world accessible. To use the TOP? tools and scripts the PATH environment
variable should include the directory

/cray/uss/u6/n5006/top2/bin
and the environment variable TOP2HOME should be set as follows:
TOP2HOME = /cray/uss/u6/n5006/top2

In case the directory top2 is to be copied to another place, the path and the environment
variable have to be adjusted accordingly.

13.2 Resources

The TOP? code generator top2pp requires a resource file that specifies default values for
some code generation options. The default resource file is

$TOP2HOME/resources/top2pprc

36

To make a copy of this file to another place, the instructions in section 4.2 should be
followed.

The TOP? Annotator requires an X-based resource file. To assure that the resources are
properly activated, they should be explicitly loaded into the X server’s data base:

xrdb $TOP2HOME/resources/Top2

13.3 Files

As described previously, it is best to use an NFS mounted file system for the Fortran
sources that are to be used with TOP2. This file system should be accessible by the
workstation where the TOP? tools run and also by the T3D host and the T3D itself.

Normally, TOP? generates all files in this file system, so they can directly be compiled
with the scripts top2.makes and top2.makep.

As, however, the T3D loader currently doesn’t load binaries from NFS files, the compiled
binaries are currently copied to /ptmp/$LOGNAME. Hence, the execution of the sequential
and the parallel code should be started from this directory. Furthermore, if communi-
cation is not via UNIX sockets but via NFS files, these files will as well be put into
/ptmp/$LOGNAME, if the binaries were started there. Changes to these file naming conven-
tions can be made in the scripts top2.makes and top2.makep.

37

e d IpxIqTT
dsTeTTIoyeuw

e-dzdoaqrT doyeu- zdoa

zdo3/Teoot1/asny/
= HWOHZJOL$

gGLwez uobeied

STTF TX0XOOT
STTF 0X0XP0T
% 10O

x NI
sabueyd - 4
x/S3TUN

zdol
J-aed-a0anos
J-bes- soanos
3-zdoa-eoanos
J-eo0anos

uobelsed pue ung
uo paunow SN

A1o)oal1p Bunjiom Jesn

oxddgzdoa
zdoL

$20IN0Sax

FNAYEY " Tqoel
3 aed- tqoyel
3" zdo3 - Tqoxel

©rsTIPXIATT
e d IpxIqTT
dsTeTTIoyeW

3 Tqoyel e dzdo3qrT
d - szuxur erszdoaqTT
d- zuxw
d - Tuxw doseu: zdoa
I - wxw soyew* zdol
ddzdoa
sd-sprnbissngdol zdoa
owsp oop qrT utq
zdoa/TeooT1/asny/
= HWOHZJOL$

JZlwez ung

: TOP? Files

Figure 6

38

