FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Per for mance Analysis Environment for
SVM-Fortran Programs

Michael Gerndt

KFA-ZAM-IB-9417

Juli 1994
(Stand 21.07.94)

Performance Analysis Environment for
SVM-Fortran Programs

M. Gerndt

Research Centre Jilich (KFA)
Central Institute for Applied Mathematics
52425 Jilich

Germany

Abstract

This report outlines the design of a performance analysis environment for SVM-
Fortran programs. SVM-Fortran is a shared memory parallel programminglanguage
developed at KFA for distributed memory multiprocessors. The environment allows
to analyze the data locality of a given program via runtime tracing and supports
the identification of critical code regions to guide the user or an optimization tool
in tuning the program. To reduce the amount of runtime data, the environment
combines trace data with static program information and supports an incremental
analysis cycle. In addition to the overall design, we present the trace format of
runtime events. The trace format includes symbolic information to relate runtime
information to the program text which is the essential part of the user interface.
The performance analysis environment is part of OPAL, a tool that will combine
performance analysis and program optimization.

The work described in this report is being carried out as a part of the Esprit project
“Performance-Critical Applications of Parallel Architectures (APPARC) ” and of the KFA-
Intel collaboration.

Contents

1 Motivation

2 Design

3 SVM-Fortran Concepts

4 Trace format

4.1 Kernel Events e e
4.2 SVM-Fortran Language Events
4.2.1 Global Scheduling oo o o .
4.2.2 Synchronization L e
4.2.3 SVM Run-Time Support 0 i
4.2.4 Overhead Information L0 L.

5 User Interface
6 Status
A SVM-Kernel SDDF Trace Format

B SVM-Fortran SDDF Trace Format
B.1 Global Scheduling
B.2 Synchronization e e
B.3 Run-Time Support e
B.4 Trace Overhead o s

11
11
15
15
19
21
22

24

29

31

1 Motivation

Massively parallel computers (MPP) offer an immense peak performance. Current architec-
tures consist of hundreds of nodes with physically distributed memory and are either pure dis-
tributed memory systems (Paragon), hardware-supported shared memory systems (KSR,Cray
T3D), or software-based shared virtual memory machines (Koan/iPSC2, MYOAN /Paragon,
ASVM/Paragon).

Shared virtual memory (SVM) machines provide a global address space on top of physically
distributed memory via an extension of the virtual memory paging mechanism [1]. Page faults
on one processor are served by another processor which currently has the page of the global
address space in its private memory. On such systems message passing and shared memory are
both available for data exchange among processors.

Different programming models can be provided on top of the basic architectural model. The
message passing model is the most important model on distributed memory machines. Recently,
the data parallel programming model is promoted for massively parallel systems and was stan-
dardized as High Performance Fortran (HPF) [4]. In HPF potential parallelism is identified
by the user in form of vector statements and dependence-free loops however the programmer
has no explicit control of parallel activities. This is the main feature of the shared memory
programming model for MPPs, e.g. the Craft programming model of Cray T3D, KSR Fortran,
Fortran-S, and SVM-Fortran.

Our work alms at providing a shared memory parallel programming model on distributed
memory systems. The message passing model is too low-level for application programmers.
The data parallel model is difficult to implement because it is the compilers task to resolve
remote memory accesses via message passing code. In addition, the goal of freeing the user
from the burden of actually doing parallel programming will not be reached in the near future.
Although, the user does not need to control parallelism in the language he has to understand
the generated parallelism to debug and optimize his code.

In the shared memory programming model the user has to control the parallelism explicitly.
Additionally, he can access data in the wellknown type of memory references and he can paral-
lelize the application in an incremental manner. Although the basic concepts of shared memory
programming are well understood, shared memory programming on massively parallel systems
has an important new problem: data locality.

Access to remote memory is much more expensive in current MPPs than access to local memory.
This is especially true for SVM systems since remote memory access is implemented via software.
The user has to be aware of this difficulty and has to write and optimize his program with respect
to this fact. This optimization can be done only if the user is able to understand the runtime
behaviour of his code.

Runtime performance information can additionally be used for dynamic optimization. For
example, page distribution and page travel information can help to dynamically distribute work
to processors. When carefully designing the interface for accessing performance information at
runtime it can be used for runtime optimization as well as post-mortem performance analysis.

Two concepts have been developed to allow analysis of the runtime behaviour of programs:
trace visualization and performance prediction.

For the message passing model several graphical tools have been implemented that visualize
the program behaviour on the basis of runtime traces [5, 6, 7, 8, 9]. KSR provides a tool called
GIST [10] that visualizes execution traces from KSR Fortran parallel programs. The traces
contain all information that might be of interest in the form of individual events. The tools
provide several graphical displays to visualize the information.

The major drawbacks in generating traces are the immense amount of data generated and
its influence on program behaviour. These drawbacks will be even more severe when looking

for information about memory references in shared memory parallel programs than for message
passing programs. Therefore, it is very important to reduce the amount of information generated
at runtime.

Our approach to data reduction is to exploit special language features, to do tracing on different
levels of granularity, to allow selective tracing, and to do performance prediction.

e SVM-Fortran supports global work distribution via distribution of templates. The distri-
bution directives are the point to monitor a specific distribution. This information need
not be monitored at each loop where scheduling decisions are taken based on a template’s
distribution.

o Selective tracing allows to request specific information for individual areas of the parallel
code. The user can, for example, request only read page faults for a specific array in a
specific parallel loop.

e Different granularity levels can be used to incrementally analyze the code, starting from
a coarse overview moving on to carefully analyzing individual parts of the code.

e Performance prediction is a new approach in parallel programming and aims at determin-
ing performance information from the program text. It is currently pursued to facilitate
programming in HPF [11, 12]. Since static analysis is often impossible because of missing
runtime parameters, runtime information and static information has to be combined [13].
For example, if loop boundaries that are runtime dependent were traced in a previous
run a tool might be able to predict information on data locality based on the references
in the loop.

The presented concepts for data reduction are effective only if specific and useful information is
requested. A tool might be able to request information automatically from previous, perhaps
coarser information. Such an automatic approach requires knowledge about typical performance
bottlenecks.

At least as important as the question "How to generate data?” is the question "How to present
the data?”. Visualization tools present information either as an animation of the dynamic
behaviour or in form of statistics. Although visualization may give the user insight in the
dynamic behaviour, such tools lack source-code information and do not provide an automatic
detection of performance bottlenecks.

Our approach to data visualization is twofold. We developed a graphical visualization tool,
PARvis [9], that includes state-of-the-art visualization techniques and allows trace analysis
on different granularity levels via sophisticated zooming and flexible scrolling techniques. In
addition, we plan to develop a source-code-based analysis tool, that will be able to identify
performance bottlenecks automatically with the help of information on possible types of perfor-
mance bottlenecks and by automatically analyzing program behaviour. Determined information
will then be presented directly by annotating source code.

2 Design

The basis of our research on SVM is SVM-Fortran [14] and several SVM implementation on
Paragon. The overall design is outlined in Figure 1.

OPAL PARvis

| Locality Analyzer H Optimizer |

A A

SVM-Fortran

- SPMD model - allocatable processor sets
- parallel sections & loops - work distribution templates
- shared & private variables - user guided dynamic distributions

A A

SVM-Fortran Compiler
+ native F77 Compiler

A

Paragon + SVM implementation

Figure 1: SVM-Fortran programming environment

SVM-Fortran is a shared memory programming extension of FORTRAN 77 aiming at language
support for optimizing data locality. Its main features are outlined in the next section. The
target system is Intel Paragon for which multiple research groups are developing SVM imple-
mentations. We plan to use the external servers MYOAN (IRISA) [2] and MAX (TU Miinchen)
[3], and ASVM (Intel ESDC), a kernel implementation of SVM.

On top of SVM-Fortran we will provide programming tools. OPAL (Optimizer and Locality
Analyzer) will combine our performance analysis techniques with source code optimizations.
In addition, PARvis will be available to analyze the behaviour of SVM-Fortran programs by
visualization techniques. PARvis is another tool which is provided to analyze SVM-Fortran
trace files. It gives the user insight in the dynamic behaviour of the application by visualization
techniques and by gathering statistics on arbitrary intervals of the total runtime.

In the following we describe the general performance analysis concept for SVM-Fortran pro-
grams and the design of OPAL.

Figure 2 gives a detailed overview of the performance analysis cycle. The user can start by
specifying own trace regions via directives (A). Trace regions are code sections for which specific
runtime information can be traced. Most regions the user might be interested in are trace regions
by default, such as subroutines and parallel loops.

If the user does not want to specify own trace regions he can directly start by compiling the code
for performance analysis with the SVM-Fortran compiler and the native compiler of the target
system (B). The SVM-Fortran compiler inserts specific hooks to trace runtime information.

In the second phase, trace requests are specified for individual trace regions in a trace request
file which is input to the execution and guides runtime tracing.

The SVM-Fortran compiler translates the SVM-Fortran program into a FORTRAN 77 program
and generates some mapping information in the program information file. For example, all
shared variables in a subroutine are numbered consecutively and variables are identified at
runtime via these numbers. This mapping is used to implement trace requests for specific
variables.

user trace region
> specification

performance analysis
database

compilation _
for performance analysis

SVM-Fortran
program

trace request program
mapping information

specification

trace
request file

----- trace information

execution

performance analysis

trace analysis
program analysis

—> control flow
----- » data flow

©

Figure 2: SVM-Fortran performance analysis

During execution, events are written to a trace file according to the trace requests. Events are
generated in two different locations: the SVM-kernel and the SVM-Fortran runtime library.
The runtime library will read events from a kernel event buffer and a program event buffer and
will write the events in the trace format described in this document.

Trace events are used in the analysis step in combination with information gathered from the
source code to identify performance bottlenecks. The compiler’s mapping information is needed
in this step to correctly relate trace information to the source code.

If performance bottlenecks cannot be identified precisely with the available information (exit C)
the trace request file can be adapted and more information be gathered without recompilation.
All information used in performance analysis is combined in a database.

OPAL will assist the user in all performance analysis phases:

1. user trace region specification

The tool generates directives for interactively marked code sections.

2. trace request specification

OPAL will support trace request specification in three modes. It will provide the menu-
driven analysis of trace information and the menu-driven specification of trace requests.
This mode frees the user from the subtle trace request syntax.

An advanced interactive mode will guide the user in analyzing the available information
and will suggest additional requests. This mainly facilitates handling of big applications.

In an automatic mode OPAL will automatically go through the performance analysis steps
and determine performance bottlenecks via the incremental analysis outlined in Figure 2.

3. performance analysis

OPAL will provide a source code based interface to manually analyze trace data. Based
on runtime information, e.g. loop bounds and iteration distribution, OPAL may predict
performance information by taking into account static program information. In addition,
OPAL will have an automatic analysis mode in which it gathers information and will
point the user to the specific problems of his code.

3 SVM-Fortran Concepts

Since the performance analysis environment of SVM-Fortran is source-code based, the trace
format reflects the language features. In the following we give a very brief overview of SVM-
Fortran. More details can be found in [14].

SVM-Fortran is a shared memory parallel Fortran 77 extension targeted mainly towards data
parallel applications on shared virtual memory (SVM) systems. The main application area is
broader than that of HPF and Vienna Fortran. SVM-Fortran supports coarse grained functional
parallelism where the parallel tasks itself can be data parallel.

The execution model of SVM-Fortran is an extension of the Single-Program-Multiple-Data
(SPMD) model [15] which is well-known for its low-overhead parallel execution and is best-
suited for hierarchical memory machines. Processors are allocated to the parallel application
when it is started and are available until program termination.

SVM-Fortran supports nested parallelism. At program start the entire computation forms a
single task. A task is some computational work. Tasks can be dynamically decomposed into
subtasks, e.g. via a parallel section or a parallel loop construct, i.e. each section and each loop
iteration is an independent task. A task is either assigned to a single processor or to a set of
processors which execute the task cooperatively. The set of processors executing a task is called
the task’s active processor set (APS). The active processors execute the task either in exclusive
mode or in replicated mode. In exclusive mode only one processor, the APS leader, performs
the actual computation whereas in replicated mode all processors execute the same code. The
default execution mode is exclusive mode.

SVM-Fortran provides the standard features of shared memory parallel Fortran languages,
i.e. shared and private data, multi-dimensional parallel loops and parallel sections, classical
synchronization operations as well as SVM-specific synchronization such as variable locking
and atomic update.

SVM-Fortran provides specific features to determine the distribution of tasks onto processors.
Similar to Fortran-S and KSR Fortran loop annotations can be used to determine a static
or dynamic work distribution scheme. Examples for loop-level scheduling are BLOCK and

CYCLIC as well as self scheduling and affinity scheduling [16].

Data locality is not a problem to be solved on the level of individual do-loops but is a global
problem. Therefore, SVM-Fortran borrowed the concepts of processors arrangements and tem-
plates from HPF as tools to specify scheduling decisions globally via template distributions.

Parallel loops can use predefined scheduling or semi-dynamic scheduling. In predefined schedul-
ing loop iterations are assigned to processors according to the distribution of the appropriate
template element. In semi-dynamic scheduling templates are distributed according to dynamic
scheduling decisions. Thus, a dynamic scheduling decision can be applied to subsequent loops
to ensure data locality.

Templates can be handled very flexible. They can be created dynamically, distributed and re-
distributed at any point in the program and passed via the subroutine interface. SVM-Fortran
supports standard distributions like BLOCK, CYCLIC, and GENERAL_BLOCK, indirect dis-
tributions and linked distributions. Indirect distributions allow the user to use arbitrary integer
expressions in the specification of the target processor. Linked distribution is a form of align-
ment where a distribution is described via the distribution of another template.

Example 3.1:

SUBROUTINE G(....,T,N,...)

CSVM$ TEMPLATE:: T(10,10) | fixed size template
CSVM$ TEMPLATE:: T1(N,N) | automatic template
CSVM$ TEMPLATE:: T2(:,:) | creatable template

CSVM$ PROCESSORS:: P(2,2)
CSvM$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: T1i

M=. ..
CSVM$ PDO(LOOPS(I,J),STRATEGY (ON_HOME(T1(I,J))))
DO I=1,M
DO J=1,M

ENDDO
ENDDO

CSVM$ CREATE:: T2(M,M)
CSVM$ REDISTRIBUTE (BLOCK,BLOCK) ONTO P :: T2

CSVM$ PDO(LOOPS(I,J),STRATEGY (ON_HOME(T2(I,J))))
DO I=1,M
DO J=1,M

ENDDO
ENDDO

CSVM$ PDO(LOOPS(I,J),PROCESSORS(P),STRATEGY (BLOCK,BLOCK))
DO I=1,10
DO J=1,10

ENDDO
ENDDO

This example illustrates templates as well as the scheduling features of SVM-Fortran. Template
T is a fixed size template that is an argument of the subroutine. The shape of the local template
T1is determined at runtime and depends on the argument N. The shape of the creatable template
T2 is adapted to the iteration space of the first two loops.

The first two loops use predefined scheduling according to a template’s distribution. Since T
is not adapted to the iteration space the resulting load balance may not be optimal. When
adapting the size of template T2 to the iteration space the template’s distribution leads to a
much better load balance for the second loop.

The third loop uses static loop-level scheduling. This feature is useful if the programmer does
not want to declare and use templates for scheduling.

10

4 Trace format

The trace format was defined within the APPARC project. It consists of kernel events and
language events. The format of the kernel events is common to MYOAN, MAX, and ASVM,
whereas the language events are specific to SVM-Fortran.

The events are defined in the standard SDDF format [17]. This format was chosen since
the structure of the individual records can easily be changed without complex changes to the
I/O-components of the tools. Furthermore, differences in the data representation between the
parallel system and the platform of the analysis tool are handled automatically by the SDDF
library.

4.1 Kernel Events

The following table specifies the events generated by the SVM implementation and the reason
or location where the event is generated.

| Event | Location
read-page-fault-sum trace region exit
write-page-fault-sum trace region exit

read-page-fault-serviced | read page fault
write-page-fault-serviced | write page fault

invalidate-copy receipt of invalidation
reduce-access-permission | receipt of read access request
page-travel trace region exit
o-page-dist start/end of trace region
c-page-dist start/end of trace region
page-out page 1s paged out

In the following description of the events node id is meant to be a global node number related
to the program, thus a number between 0 and NUMPROCS()-1. Some events include the pair
data start address and data end address which specifies a memory area for which the data were
gathered. This is used when information is traced only for specific variables.

The events o-page-dist and c-page-dist capture the current distribution of pages. This global
information is needed when, for example, more detailed tracing is required for a parallel loop,
e.g. individual page faults, or when static program analysis is applied to predict performance
characteristics.

The events provide data of different granularity. While o-page-dist and c-page-dist capture
the current page distribution only, read-page-fault-sum, page-travel, and read-page-fault-
serviced give more and more detailed information.

The following list describes the individual events:

11

read-page-fault-sum event record.

Read page faults are counted in a trace region for a specific data address range.

node id

clock microseconds
segment id

data start address
data end address
number of page faults

Processor identification

Time stamp

Data segment identification

Start address to count read page faults for
End address to count read page faults for
Number of read page faults in the address
range

write-page-fault-sum event record.

Write page faults are counted in a trace region for a specific data address range.

node id

clock microseconds
segment id

data start address
data end address
number of page faults

Processor identification

Time stamp

Data segment identification

Start address to count write page faults for
End address to count write page faults for

Number of write page faults in the address
range

read-page-fault-serviced event record.

A read page fault has occurred and is serviced:

node id

fault clock microseconds
segment id

faulting address

faulting page number
instruction address

node id that sent the page
serviced clock microseconds

Processor identification

Time when the read page fault occurred
Data segment identification

Exact faulting address

Number of the faulting page

Instruction that caused the read page fault
Processor identification of the sending node
Time when the page was received on the
faulting node

write-page-fault-serviced event record.

A write page fault has occurred and is serviced:

node id

fault clock microseconds
segment id

faulting address

faulting page number
instruction address

node id that sent the page
serviced clock microseconds

Processor identification

Time when the write page fault occurred
Data segment identification

Exact faulting address

Number of the faulting page

Instruction that caused the write page fault
Processor identification of the sending node
Time when the page was received on the
faulting node

12

invalidate-copy event record.
A write page fault has occurred and caused the invalidation of a copy of the page.

node id Processor identification

clock microseconds Time when the page was invalidated

segment id Data segment identification

faulting address Exact faulting address (remote task)

faulting page number Number of the faulting page

requesting node Processor identification of the
sending node

reduce-access-permission event record.
A read page fault has occurred and caused the change of access permission of the page
from write to read-only.

node id Processor identification

clock microseconds Time when the page was invalidated

segment id Data segment identification

faulting address Exact faulting address (remote task)

faulting page number Number of the faulting page

requesting node Processor identification of the
sending node

page-travel event record:
This event record reflects the traveling of pages covering a specific address range between
the processors in a trace region. Every processor records how many pages it has received
from the other processors.

node id Processor identification

clock microseconds Time stamp

segment id Data segment identification

data start address Start address to count page transfers for

data end address End address to count page transfers for

number of received pages The +—th element of this array reflects the
number of pages received from processor <.

o-page-dist event record:
The o-page-dist event states the current distribution of writable pages of a specific data
address range. Every processor records the number of owned pages and the page numbers
of these pages.

node id Processor identification

clock microseconds Time stamp

segment id Data segment identification

data start address Start address to count the distribution for
data end address End address to count the distribution for
number of owned pages Number of owned pages

owned pages List of owned pages

13

c-page-dist event record:
The c-page-dist event states the current distribution of read-only pages of a specific data
address range. Every processor records the number of copies and the page numbers of
these copied pages.

node id Processor identification

clock microseconds Time stamp

segment id Data segment identification

data start address Start address to count the distribution for
data end address End address to count the distribution for
number of copied pages Number of copied pages

copied pages List of copied pages

page-out event record:
A page is paged out to the backing store or another node due to lack of memory space.

node id Processor identification
clock microseconds Time stamp

segment id Data segment identification
page number Number of the page
target node node id of target node

14

4.2 SVM-Fortran Language Events

The events include the following program text information, generated in the program informa-
tion file by the SVM-Fortran compiler:

e subprogram number

Each user subprogram can be identified by this number.

e directive number

The SVM-Fortran directives of each subprogram are numbered consecutively according
to their textual appearance in the subprogram.

e variable number

For each subprogram all shared variables can be identified by this unique number.

Some events specifying information global to the active processor set (APS) are written only
by its leader. Whether an event is such a global event is specified within the following event
specifications.

Table 1 gives an overview of the possible events generated for SVM-Fortran language constructs.
The following abbreviations are used:

all region start events: o-page-dist
c-page-dist
page-travel
read-page-fault-sum
write-page-fault-sum

all region stop events:

The trace requests in the trace request file determine which of these events are generated during
execution on the basis of individual trace regions.

4.2.1 Global Scheduling

Event Location

trace-region-start
trace-region-stop

trace region entry
trace region exit

template-info
template-dist
undef-template
destroy-template

TEMPLATE, CREATE directives
DISTRIBUTE, REDISTRIBUTE directives
UNDEF directive

DESTROY directive

proc-arrangement

PROCESSORS directive

pdo-info
pdo-iteration-space

PDO directive
end of PDO

section-info

SECTION of a PSECTION

aps-info

PDO, SECTION directives

variable-mapping

shared variable declaration

The event records template-info, template-dist and proc-arrangement are traced through
the whole program regardless of the currently defined trace regions because it is possible to pass

templates and processor arrangements through the subprogram interface.

15

91

SJUSAD PUB SIATIIRIIP URIMOA-TNAS T °2[9&l

Directive/Location

Events

Directive/Location

Events

user subroutine start

trace-region-start
all region start events

CRITICAL_SECTION

wait-crit-sec-start
walt-crit-sec-stop

user subroutine stop

all region stop events
trace-region-stop

CRITICAL_SECTION_END

exit-crit-sec

LOCK

wailt-lock-start

SHARED mapping-event wait-lock-stop
PDO trace-region-start LOCK_END release-lock
pdo-info ATOMIC UPDATE wait-lock-start
aps-info wait-lock-stop
all region start events PROCESSORS proc-arrangement
end of PDO template-dist TEMPLATE template-info
all region stop events UNDEF undef-template
wait-barrier-start CREATE template-info
walt-barrier-stop DESTROY destroy-temlate
pdo-iteration-space DISTRIBUTE template-dist
trace-region-stop REDISTRIBUTE template-dist
PSECTION trace-region-start REPLICATED REGION trace-region-start
all region start events all region start events
SECTION section-info REPLICATED_REGION_END

aps-info
all region start events

PSECTION_END

all region stop events
wait-barrier-start
walt-barrier-stop
trace-region-stop

BARRIER

wait-barrier-start
walt-barrier-stop

BARRIER_CHECKIN

barrier-checkin

BARRIER_CHECKOUT

wait-bcheckout-start
wait-bcheckout-stop

all region stop events
wait-barrier-start
walt-barrier-stop
trace-region-stop

EXCLUSIVE_REGION

trace-region-start
all region start events

EXCLUSIVE_REGION_END

all region stop events
wait-barrier-start
walt-barrier-stop
trace-region-stop

trace-region-start event record:

A process begins to work in a trace region.

node id

clock microseconds
subprogram number
directive number
trace region type

Processor identification
Time when the trace region is exited
Trace region identification

subroutine, psection, pdo, replicated region
or exclusive region

trace-region-stop event record:

A process stops working in a trace region.

node id

clock microseconds
subprogram number
directive number
trace region type

Processor identification
Time when the trace region is exited
Trace region identification

subroutine, psection, pdo, replicated region
or exclusive region

template-info event record:

Information about a template is written by the APS leader.

node id

clock microseconds
template id
subprogram number
directive number
number of dimensions
template shape

Processor identification
Time stamp
Template identification

Number of dimensions
Template shape

template-dist event record:

The template-dist event holds the distribution of a template. Instead of writing the
template directly, i. e. for every template element write the processor number that owns
this element, we suggest writing the inverse function of the template distribution: every
processor writes his own local elements of the template.

node id Processor identification
clock microseconds Time stamp
template id Template identification

owned indices Template indices that the processor owns

undef-template event record:
The undef-template event occurs if a template is set undefined.

node id Processor identification
clock microseconds Time stamp
Template identification

template id

destroy-template event record:
The destroy-template event occurs if a creatable template is no longer needed and de-
stroyed with a DESTROY directive.

node id Processor identification
clock microseconds Time stamp
Template identification

template id

17

proc-arrangement event record:

Information about a processor arrangement is written by the leader of the active processor

set.

node id

clock microseconds
proc arrangement id
subprogram number
directive number
number of dimensions
shape of dimensions
pids

Processor identification
Time stamp
Processor arrangement identification

Number of dimensions
For every dimension start and end index
Processor identifications of the processors
in column—major order

pdo-info event record:

A parallel loop is encountered by the

pdo-info event record.

active processor set and the leader writes the

node id

clock microseconds
subprogram number
directive number

proc arrangement id
proc arrangement shape
block cyclic length

const template indices

Processor identification
Time stamp
PDO identification

Processor arrangement identification
user-specified shape

user-specified block length
(loop-level scheduling)

values of constant indices
(predefined scheduling,

dynamic scheduling)

pdo-iteration-space event record:

At the end of a parallel loop the APS leader writes the pdo-iteration-space event record.

node id

clock microseconds
subprogram number
directive number
iteration space

Processor identification
Time stamp
PDO identification

for each loop 9 values

min (lower bound, upper bound, stride)

max (lower bound, upper bound, stride)
increment (lower bound, upper bound, stride)
0 - no increment or variable increment

value - constant increment

18

section-info event record:

One section of a parallel section is processed. The leader of the new formed APS writes
the section-info event record. The proc arrangement id and shape of dimensions

are optional.

node id

clock microseconds
subprogram number
directive number
proc arrangement id

shape of dimensions

Processor identification
Time stamp

SECTION identification

Processor arrangement identification that
works on this section
For every dimension start and end index

aps-info event record:

A new active processor set is formed and the leader of the APS writes the numbers of

the involved processors.

node id
clock microseconds
pids

Processor identification
Time when the trace region is exited
Processor identifications of the processors

variable-mapping event record:
VM-address of shared variables.

node id

clock microseconds
subprogram number
variables/address

Processor identification
Time stamp

List of variable number/VM-address pairs

4.2.2 Synchronization

SVM-Fortran offers several operations (barrier, lock, critical section, barrier checkin and check-
out) to synchronize cooperating processes. In order to detect load imbalances or just to figure
out how much time the processes spend waiting for each other we introduce the following event

records.

| Event

Location |

walt-barrier-start
wait-barrier-stop

explicit or implicit BARRIER
explicit or implicit BARRIER

barrier-checkin
wait-bcheckout-start
wait-bcheckout-stop

BARRIER_CHECKIN directive
BARRIER_CHECKOUT directive
BARRIER_CHECKOUT directive

wait-lock-start
wait-lock-stop
release-lock

LOCK directive
LOCK directive
LOCK directive

walt-crit-sec-start
wait-crit-sec-stop
exit-crit-sec

CRITICAL_SECTION directive
CRITICAL_SECTION directive
CRITICAL_SECTION directive

19

wait-barrier-start event record.
A process starts waiting at a barrier.

node id Processor identification
clock microseconds Time stamp
subprogram number BARRIER identification
directive number

wait-barrier-stop event record.
A process stops waiting at a barrier and proceeds with its work.

node id Processor identification
clock microseconds Time stamp
subprogram number BARRIER identification
directive number

barrier-ckeckin event record.
A process enters a barrier via a BARRIER CHECKIN directive.

node id Processor identification
clock microseconds Time stamp
subprogram number BARRIER identification
directive number

wait-bcheckout-start event record:
A process starts to wait at a BARRIER CHECKOUT directive until all other cooperating
processes have arrived at the corresponding BARRIER _CHECKIN directive.

node id Processor identification

clock microseconds Time stamp

subprogram number BARRIER_CHECKOUT identification
directive number

wait-bcheckout-stop event record:
A process stops waiting at a BARRIER_CHECKOUT directive.

node id Processor identification

clock microseconds Time stamp

subprogram number BARRIER_CHECKOUT identification
directive number

wait-lock-start event record:

A process wants to access a variable that is guarded by a lock and starts waiting on the
lock to become free.

node id Processor identification

clock microseconds Time stamp

subprogram number LOCK identification

directive number

locking address Address pairs of locked memory locations

20

wait-lock-stop event record:
A process gets access to a variable that is guarded by a lock.

node id Processor identification
clock microseconds Time stamp
subprogram number LOCK identification
directive number

release-lock event record:
A process releases a lock.

node id Processor identification
clock microseconds Time stamp
subprogram number LOCK identification
directive number

wait-crit-sec-start event record:
A process wants to enter a critical section and starts to wait.

node id Processor identification

clock microseconds Time stamp

subprogram number CRITICAL_SECTION identification
directive number

wait-crit-sec-stop event record:
A process is allowed to enter a critical section and stops waiting.

node id Processor identification

clock microseconds Time stamp

subprogram number CRITICAL_SECTION identification
directive number

exit-crit-sec event record:
A process is exits a critical section.

node id Processor identification

clock microseconds Time stamp

subprogram number CRITICAL_SECTION identification
directive number

4.2.3 SVM Run-Time Support

The mapping of shared segments into the virtual address space of the executing task is monitored
to map page faults to variables.

To overcome the problems introduced by false—sharing it is possible to change the coherence
strategy for a certain address space with the COHERENCE directive. The PREFETCH directive
enables to hide network transfer latencies by fetching data before it is needed.

| Event | Location |

shared-segment-address | allocation of shared segment
coherence-switch COHERENCE directive
prefetch PREFETCH directive

21

shared-segment-address event record:
The address in the virtual address space for a shared segment. is changed.

node id Processor identification
clock microseconds Time stamp

segment id Shared segment identification
address Start address

coherence-switch event record:
The coherence strategy for a shared or partially shared variable is changed.

node id Processor identification

clock microseconds Time when the coherence is changed
subprogram number COHERENCE identification

directive number

segment id Data segment identification

data start address Start address to change the coherence for
data end address End address to change the coherence for
coherence strategy New coherence strategy

time microseconds Time needed to change the coherence

prefetch event record:
Some shared or partially data is transferred to a processor on demand of a PREFETCH

directive.
node id Processor identification
clock microseconds Time when the prefetch is initiated
subprogram number PREFETCH identification
directive number
segment id Data segment identification
data start address Start address of the data to be prefetched
data end address End address of the data to be prefetched

4.2.4 Overhead Information

Since the collection of trace information produces some overhead on the system it is necessary
to measure the time spent for trace actions. An equally important topic is the collection of

SVM overhead data.

| Event | Location |
trace-overhead trace overhead
svm-overhead SVM runtime overhead

kernel-trace-buffer-overflow | trace buffer overflow

trace-overhead event record:
Time of specific trace overhead.

node id Processor identification
clock microseconds Time stamp

duration microseconds overhead

overhead type type of overhead

22

svim-overhead event record:
Time of SVM overhead.

node id Processor identification
clock microseconds Time stamp

duration microseconds overhead

overhead type type of overhead

kernel-trace-buffer-overflow event record:
The kernel trace buffer that the event records are written to has overflown.

node id Processor identification
clock microseconds Time stamp

23

5 User Interface

We already introduced the concept of trace regions that cover the interesting parts of the
program. Trace regions can be nested, i.e. within a deeper nested trace region more specific
information can be collected. In SVM-Fortran we define the following program parts as implicit
trace regions:

¢ PROGRAM

e SUBROUTINE

e PDO

e PSECTION

e SECTION

e REPLICATED_REGION
e EXCLUSIVE_REGION

Stage 0: All traces are switched off
Stage 1: trace-region-start
trace-region-stop
trace-overhead

trace-overflow

Stage 2: | Stage 1 pdo-info

section-info

aps-info
template-info
template-dist
undef-template
destroy-template
proc-arrangement
Synchronization events
read-page-fault-sum
write-page-fault-sum
page-travel
o-page-dist
c-page-dist
coherence-switch
prefetch
read-page-fault
write-page-fault
invalidate-copy

Stage 3: | Stage 2
Stage 4: | Stage 3

Stage 5: | Stage 4

Stage 6: | Stage b

s E i S e o e B B A e R

Table 2: Performance analysis stages

In addition to the implicit trace regions, the user can define trace regions with the directives
TRACE USER_REGION and TRACE USER_REGION_END. User—defined trace regions shall fit into the
structure of predefined trace regions (PROGRAM, SUBROUTINE, PDO, PSECTION, SEC-
TION, REPLICATED REGION, and EXCLUSIVE_REGION). That means that a user—defined

24

trace region can only appear inside of a subprogram. For example, if a TRACE_USER REGION di-
rective appears inside of a replicated region the corresponding TRACE USER _REGION_END directive
shall appear there, too.

To remove some burden of work from the user, SVM—-Fortran’s performance monitoring provides
some standard information stages that help to get trace data from a coarse to a fine level. The
stages are defined in Table 2.

The individual stages will be selectable via the trace request file. The request file is a sequence
of local and global trace requests. Local trace requests are related to individual trace regions,
e.g. loop information request, whereas global requests are related to the entire code.

All request can select special nodes, special trace regions, and individual variables. Variables
and subroutines are identified by their names, and trace regions can be identified either by the
do-loop label, a region number !, or a user specified label.

The following syntax rules outline the structure of a trace request file. OPAL will provide a
user-friendly interface for the specification of requests and will generate the appropriate entries
automatically.

!Regions in a subroutine are numbered according to their textual appearance.

25

Syntax:

TraceRequestFile

FileEntry

Comment

ConfigType

RequestEntry

NodeSpec

NodeList

NodeRange

GlobalReq

LocalReq

is
or

or

or

is

is
or
or

is
or

is
or
is
or

is

is

is

< FileEntryList>

< Comment>
CONFIG < ConfigType>

specification of configuration parameters
INCLUDE < T'R_Filename>

‘ reads another trace file
REQUEST < RequestEntry>

‘ individual requests

SVM_TraceBuf Size: <Size>
SVM_Kernel TraceBuf Size: <Size>
SVM_TraceStage: <StageNo>

‘ specification of a tracing stage

[(<NodeSpec>)1 < GlobalReg>
[(<NodeSpec>)1 <LocalReg>

NodeSpec restricts this request to the specified
nodes.

< NodeList>
*

NodeNo [, < NodeList>]
< NodeRange>[,<NodeList>]

NodeNo—-NodelNo
GLOBAL < GlobalReqList>

LOCAL < LocalReqEntry>

26

Syntax:

GlobalReqList

GlobalReqType

Local ReqEntry

SubName

Regldent

LocalReqList

LocalReqType

is

is

or
or
or

is

is
or

or

is
or

or
or

is

is
or
or

< GlobalReqType>1[, < GlobalReqList>]

MappingInfo
variable mapping
template mapping
processor arrangement mapping

TrOverhead
KernBufOverflow
*

<SubName> . < Regldent>: < Local ReqList>

Name of Subroutine
OMAIN

‘ main program

‘ all user subprograms

PDO_LABEL (< LabelSpec>)
REG_LABEL (< LabelSpec>)

‘ user-specified label

REGNO (< LabelSpec>)
*

‘ all trace regions
(< LocalReqType>) [, < Local ReqList>]

<SVMInfo>
<SyncInfo>
< LanglInfo>

27

Syntax:

SVMInfo

Synclnfo

LangInfo

Varlist

or

or
or

or

or

or
or

or

or

or

or
or
or

or

or

or

or
or
or

RPFSum[< Varlist>]
WPFSum[< Varlist>]

read and write page fault sums

RPF [< Varlist>]
WPF [< Varlist>]

individual page faults
InvalCopy [< Varlist>]

invalidation information
PageTravel [< Varlist>]

page travel information

OwnPageDist [< Varlist>]
CurPageDist [< Varlist>]

page distribution information
PageOut [< Varlist>]
‘ paging to other nodes or disks
SVMOverhead

SVM runtime overhead
* . SVMInfo [< Varlist>]

‘ all previous requests

BARRIER
LOCK
WaitCritical
*.SyncInfo

REGION
‘ start and stop time of regions
PDOInfo
scheduling and iteration space information
SECTIONInfo
‘ scheduling information
APSInfo

changes in the APS for parallel loops and parallel
sections

CoSwitch

Prefetch

*.LangInfo

‘ all previous requests

< VariableName> [, < Varlist>]

28

6 Status

SVM-Fortran is becoming more and more a stable language. There will be a reference manual
in a few months. The compiler is currently working as a prototype implementing a single level
of parallelism, global work distribution constructs, and synchronization features.

PARvis is a full functioning tool that will be used on the traces as soon as the SVM implemen-
tation will be able to generate the trace information. Currently an ASVM prototype is used on
KFA’s Paragon. This prototype does not include performance analysis support. This will be
added in the next months.

We are currently designing the performance analysis part of OPAL and will have a first imple-
mentation of the menu-driven mode by the end of this year.

Thanks

I would like to thank Thierry Priol for his cooperation in designing the kernel trace format and
my colleaques Andreas Krumme and Selguk Ozmen for providing me with the grammar of the
trace request file and for their helpful comments in preparing this document.

29

References

[1] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, Ph.D. Dissertation,
Yale University 1986, Technical Report YALEU/DCS/RR-492

[2] G. Cabillic, Th. Priol, I. Puaut, MYOAN: an Implementation of the KOAN Shared
Virtual Memory on the Intel Paragon, IRISA, Technical Report No. 812, April 1994

[3] R.G. Hackenberg, MaX - Investigating Shared Virtual Memory, High-Performance
Computing and Networking, Lecture Notes in Computer Science, Springer Verlag, Mu-
nich, Germany, April 94

4] HPFF, High Performance Fortran Language Specification, High Performance Fortran
g
Forum, May 1993, Version 1.0, Rice University Houston Texas

[5] Th. Bemmerl, O. Hansen, Th. Ludwig, PATOP for Performance Tuning of Parallel
Programs, H.Burkhart (Ed.), Proceedings CONPAR 90 - VAPP IV, LNCS 457, 756-
765, Zurich, 1990

[6] M.T. Heath, J.E. Finger, ParaGraph: A tool for visualizing performance of parallel
programs, ParaGraph User Guide, Oak Ridge National Laboratory, December 1993

[7] B. Thomas, K. Peinze, Suprenum comfort of parallel programming, Supercomputer,

Vol.6, No. 2, pp. 31-43, 1989
[8] D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields, B.W. Schwartz, An

Overview of the Pablo performance Analysis Environment, Technical Report, Univer-
sity of Illinois, Department of Computer Science, 1992

[9] W.E. Nagel, A. Arnold, Performance Visualization of Parallel Programs - The PARuvis
Environment - , Caltech Technical Report, CCSF-47, May 1994

[10] Kendall Square Research Corp., KSR/Series Performance Analysis, KSR/Series Man-
uals, Waltham, 1993

[11] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, A. Schwald, Vienna Fortran - A
language Specification Verston 1.1, University of Vienna, ACPC-TR 92-4, March 1992

[12] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.W. Tseng, An Overview of the
Fortran D Programming System, Rice University, Rice COMP TR91-154, March, 1991

[13] T. Fahringer, H. Zima, A Static Parameter based Performance Prediction Tool for
Parallel Programs, Proceedings 1CS’93, Tokyo, pp.207-219, 1993

[14] R. Berrendorf, M. Gerndt, W. Nagel, J. Primmer, SVM-Foriran, Interner Bericht
KFA-ZAM-IB-9322, Zentralinstitut fiir Angewandte Mathematik, Forschungszentrum
Jilich, 1993

[15] F. Darema-Rogers, V.A. Norton, G.F. Pfister, Using a Single- Program-Multiple-Data
Computational Model for parallel Execution of Scientific Applications, Research Report
RC 11552 (#51726) 11/19/85, IBM Watson Research Center Yorktown Heights, 1985

[16] M.A. Linn, Untersuchungen zur Ablaufplanung bei Parallelrechnern mit virutell
gemeinsamem Speicher, Dissertation, to be published, 1994

[17] Ruth A. Aydt, The Pablo Self-Defining Data Format, Department of Computer Sci-
ence, University of Illinois, Urbana, Illinois 61801, 1993

30

A SVM-Kernel SDDF Trace Format

#1001:
// "event"

"read-page-

int
double
int
int
int
int

;s

#1002:
// "event"

"sum of read page faults"
fault-sum" {

"node id";

"clock microseconds";
"segment id";

"data start address';
"data end address";
"number of page faults";

"sum of write page faults"

"write-page-fault-sum" {

int
double
int
int
int
int

;s

#1003:
// "event"

"read-page-

int
double
int
int
int
int
int
double
}ss

#1004
// "event"

"node id";

"clock microseconds";
"segment id";

"data start address';
"data end address";
"number of page faults";

"read page fault occur and service"
fault-serviced" {

"node id";

"fault clock microseconds";
"segment id";

"faulting address';

"faulting page number";
"instruction address";

"node id that sent the page";
"serviced clock microseconds";

"write page fault occur and service'

"write-page-fault-serviced" {

int
double
int
int
int
int
int
double

"node id";

"fault clock microseconds";
"segment id";

"faulting address';

"faulting page number";
"instruction address";

"node id that sent the page";
"serviced clock microseconds";

31

#1005:
// "event" "invalidation message received"
"invalidate-copy" {

int "node id";
double '"clock microseconds";
int "segment id";
int "faulting address';
int "faulting page number";
int "requesting node id";
35
#1006:

// "event" "reduce access permission'
"reduce-access-permission" {

int "node id";
double '"clock microseconds";
int "segment id";
int "faulting address';
int "faulting page number";
int "requesting node id";
35
#1007:

// "event" "page travel for a specific data region"
"page-travel" {

int "node id";
double '"clock microseconds";
int "segment id";
int "data start address';
int "data end address";
int "received pages"[];
};;
#1008:

// "event" "distribution of writable pages"
"o-page-dist" {

int "node id";

double '"clock microseconds";
int "segment id";

int "data start address';
int "data end address";

int "number of owned pages";
int "owned pages'[];

32

#1009:
// "event" "distribution of read-only pages"
"c-page-dist" {

int "node id";
double '"clock microseconds";
int "segment id";
int "data start address';
int "data end address";
int "number of copied pages";
int "copied pages"[];
¥
#1010:
// "event" '"page out a page"
"page-out" {
int "node id";
double '"clock microseconds";
int "segment id";
int "page number";
¥

33

B SVM-Fortran SDDF Trace Format

B.1 Global Scheduling

#1301:
// '"event" "start a trace region"
"trace-region-start" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
int "trace region type";
};;
#1302:

// '"event" "stop a trace region"
"trace-region-stop" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
int "trace region type";
};;
#1303:

// "event" "information about a template"
"template-info' {

int "node id";
double '"clock microseconds";
int "template id";
int "subprogram number";
int "directive number";
int "number of dimensions';
int "template shape'"[][];
};;
#1304:

// "event'" "distribution of a template"
"template-dist" {

int "node id";

double '"clock microseconds";
int "template id";

int "owned indices"[1[];

34

#1305:
// "event'" "undefine a template"
"undef-template' {

int "node id";
double '"clock microseconds";
int "template id";

};;

#1306:

// "event' 'destroy a template"
"destroy-template" {

int "node id";
double '"clock microseconds";
int "template id";

};;

#1307:

// "event" "arrangement of a processor set"
"proc-arrangement' {

int "node id";
double '"clock microseconds";
int "proc arrangement id";
int "subprogram number";
int "directive number";
int "number of dimensions';
int ""'shape of dimensions"[][];
int "pids"[];
¥
#1308:
// "event" "start a parallel loop"
""pdo-info" {
int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
int "proc arrangement id";
int "proc arrangement shape'[][];
int "block cyclic length"[];
int ""const template indices"[];
double '"startup time microseconds';
¥

35

#1309:
// "event' "parallel loop iteration space"
""pdo-iteration-space" {

int "node id";

double '"clock microseconds";

int "subprogram number";
int "directive number";
int "iteration space"[][];
¥
#1310:

// "event' '"start a section of a parallel section"
"section—info" {

int "node id";

double '"clock microseconds";

int "subprogram number";

int "directive number";

int "proc arrangement id";

int ""'shape of dimensions"[][];
35
#1311:

// "event" '"new active processor set"
"aps—info" {

int "node id";
double '"clock microseconds";
int "pids"[];

}ss

#1312:

// "event" "shared variable mapping"
"variable-mapping" {

int "node id";

double '"clock microseconds";

int "subprogram number";

int "variable address'" [J[]; // variable number, address

36

B.2 Synchronization

#1101:
// "event" "start waiting at a barrier"
"wait-barrier-start" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1102:

// "event" "stop waiting at a barrier"
"wait-barrier-stop" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1103:

// "event" "checking in for a barrier"
"barrier-checkin" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1104:

// "event" "start waiting at a barrier checkout"
"wait-bcheckout-start" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1105:

// "event" "stop waiting at a barrier checkout"
"wait-bcheckout-stop" {

int "node id";

double '"clock microseconds";
int "subprogram number";
int "directive number";

37

#1106:
// '"event" "start waiting at a lock"
"wait-lock-start" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
int "locking address"[][];
};;
#1107:

// '"event" "stop waiting at a lock"
"wait-lock-stop" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1108:

// "event" "release a lock"
"release-lock" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1109:

// "event" "start waiting at a critical section"
"wait-crit-sec-start" {

int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
};;
#1110:

// "event" "stop waiting at a critical section"
"wait-crit-sec-stop" {

int "node id";

double '"clock microseconds";
int "subprogram number";
int "directive number";

38

#1111:
// "event" "exit a critical section"
"exit-crit-sec'" {

int "node id";

double '"clock microseconds";
int "subprogram number";
int "directive number";

39

B.3 Run-Time Support

#1201:
// "event" "shared segment address"
"shared-segment-address" {

int "node id";

double '"clock microseconds";

int "segment id";
int "start address';
};;
#1202:

// "event" "switch coherence strategy"
"coherence-switch'" {

int "node id";

double '"clock microseconds";

int "subprogram number";
int "directive number";
int "segment id";
int "data start address';
int "data end address";
int "coherence strategy'";
double "time microseconds";
};;
#1203:
// "event'" "prefetch some data"
"prefetch" {
int "node id";
double '"clock microseconds";
int "subprogram number";
int "directive number";
int "segment id";
int "data start address';
int "data end address";
};;

40

B.4 Trace Overhead

#1401 :
// "event" "time for trace actions"
"trace—-overhead" {
int "node id";
double '"clock microseconds";
double '"duration microseconds";
int "overhead type";

;s

#1402:
// "event" "time for svm actions"
"svm-overhead-start" {
int "node id";
double '"clock microseconds";
double '"duration microseconds";
int "overhead type";

;s

#1403:
// "event" "overflow of kernel trace buffer"
"kernel-trace-buffer-overflow'" {

int "node id";

double '"clock microseconds";

;s

41

