
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Performance Analysis Environment for
SVM-Fortran Programs

Michael Gerndt

KFA-ZAM-IB-9417

Juli 1994
(Stand 21.07.94)

Performance Analysis Environment forSVM-Fortran ProgramsM. GerndtResearch Centre J�ulich (KFA)Central Institute for Applied Mathematics52425 J�ulichGermanyAbstractThis report outlines the design of a performance analysis environment for SVM-Fortran programs. SVM-Fortran is a shared memory parallel programming languagedeveloped at KFA for distributed memory multiprocessors. The environment allowsto analyze the data locality of a given program via runtime tracing and supportsthe identi�cation of critical code regions to guide the user or an optimization toolin tuning the program. To reduce the amount of runtime data, the environmentcombines trace data with static program information and supports an incrementalanalysis cycle. In addition to the overall design, we present the trace format ofruntime events. The trace format includes symbolic information to relate runtimeinformation to the program text which is the essential part of the user interface.The performance analysis environment is part of OPAL, a tool that will combineperformance analysis and program optimization.

1

.

The work described in this report is being carried out as a part of the Esprit project\Performance-Critical Applications of Parallel Architectures (APPARC) " and of the KFA-Intel collaboration. 2

Contents1 Motivation 42 Design 63 SVM-Fortran Concepts 94 Trace format 114.1 Kernel Events : 114.2 SVM-Fortran Language Events : 154.2.1 Global Scheduling : 154.2.2 Synchronization : 194.2.3 SVM Run-Time Support : 214.2.4 Overhead Information : 225 User Interface 246 Status 29A SVM{Kernel SDDF Trace Format 31B SVM{Fortran SDDF Trace Format 34B.1 Global Scheduling : 34B.2 Synchronization : 37B.3 Run-Time Support : 40B.4 Trace Overhead : 41
3

1 MotivationMassively parallel computers (MPP) o�er an immense peak performance. Current architec-tures consist of hundreds of nodes with physically distributed memory and are either pure dis-tributed memory systems (Paragon), hardware-supported shared memory systems (KSR,CrayT3D), or software-based shared virtual memory machines (Koan/iPSC2, MYOAN/Paragon,ASVM/Paragon).Shared virtual memory (SVM) machines provide a global address space on top of physicallydistributed memory via an extension of the virtual memory paging mechanism [1]. Page faultson one processor are served by another processor which currently has the page of the globaladdress space in its private memory. On such systems message passing and shared memory areboth available for data exchange among processors.Di�erent programming models can be provided on top of the basic architectural model. Themessage passing model is the most important model on distributed memorymachines. Recently,the data parallel programming model is promoted for massively parallel systems and was stan-dardized as High Performance Fortran (HPF) [4]. In HPF potential parallelism is identi�edby the user in form of vector statements and dependence-free loops however the programmerhas no explicit control of parallel activities. This is the main feature of the shared memoryprogramming model for MPPs, e.g. the Craft programming model of Cray T3D, KSR Fortran,Fortran-S, and SVM-Fortran.Our work aims at providing a shared memory parallel programming model on distributedmemory systems. The message passing model is too low-level for application programmers.The data parallel model is di�cult to implement because it is the compilers task to resolveremote memory accesses via message passing code. In addition, the goal of freeing the userfrom the burden of actually doing parallel programming will not be reached in the near future.Although, the user does not need to control parallelism in the language he has to understandthe generated parallelism to debug and optimize his code.In the shared memory programming model the user has to control the parallelism explicitly.Additionally, he can access data in the wellknown type of memory references and he can paral-lelize the application in an incremental manner. Although the basic concepts of shared memoryprogramming are well understood, shared memory programming on massively parallel systemshas an important new problem: data locality.Access to remote memory is much more expensive in current MPPs than access to local memory.This is especially true for SVM systems since remote memory access is implemented via software.The user has to be aware of this di�culty and has to write and optimize his programwith respectto this fact. This optimization can be done only if the user is able to understand the runtimebehaviour of his code.Runtime performance information can additionally be used for dynamic optimization. Forexample, page distribution and page travel information can help to dynamically distribute workto processors. When carefully designing the interface for accessing performance information atruntime it can be used for runtime optimization as well as post-mortem performance analysis.Two concepts have been developed to allow analysis of the runtime behaviour of programs:trace visualization and performance prediction.For the message passing model several graphical tools have been implemented that visualizethe program behaviour on the basis of runtime traces [5, 6, 7, 8, 9]. KSR provides a tool calledGIST [10] that visualizes execution traces from KSR Fortran parallel programs. The tracescontain all information that might be of interest in the form of individual events. The toolsprovide several graphical displays to visualize the information.The major drawbacks in generating traces are the immense amount of data generated andits in
uence on program behaviour. These drawbacks will be even more severe when looking4

for information about memory references in shared memory parallel programs than for messagepassing programs. Therefore, it is very important to reduce the amount of information generatedat runtime.Our approach to data reduction is to exploit special language features, to do tracing on di�erentlevels of granularity, to allow selective tracing, and to do performance prediction.� SVM-Fortran supports global work distribution via distribution of templates. The distri-bution directives are the point to monitor a speci�c distribution. This information neednot be monitored at each loop where scheduling decisions are taken based on a template'sdistribution.� Selective tracing allows to request speci�c information for individual areas of the parallelcode. The user can, for example, request only read page faults for a speci�c array in aspeci�c parallel loop.� Di�erent granularity levels can be used to incrementally analyze the code, starting froma coarse overview moving on to carefully analyzing individual parts of the code.� Performance prediction is a new approach in parallel programming and aims at determin-ing performance information from the program text. It is currently pursued to facilitateprogramming in HPF [11, 12]. Since static analysis is often impossible because of missingruntime parameters, runtime information and static information has to be combined [13].For example, if loop boundaries that are runtime dependent were traced in a previousrun a tool might be able to predict information on data locality based on the referencesin the loop.The presented concepts for data reduction are e�ective only if speci�c and useful information isrequested. A tool might be able to request information automatically from previous, perhapscoarser information. Such an automatic approach requires knowledge about typical performancebottlenecks.At least as important as the question "How to generate data?" is the question "How to presentthe data?". Visualization tools present information either as an animation of the dynamicbehaviour or in form of statistics. Although visualization may give the user insight in thedynamic behaviour, such tools lack source-code information and do not provide an automaticdetection of performance bottlenecks.Our approach to data visualization is twofold. We developed a graphical visualization tool,PARvis [9], that includes state-of-the-art visualization techniques and allows trace analysison di�erent granularity levels via sophisticated zooming and
exible scrolling techniques. Inaddition, we plan to develop a source-code-based analysis tool, that will be able to identifyperformance bottlenecks automatically with the help of information on possible types of perfor-mance bottlenecks and by automatically analyzing program behaviour. Determined informationwill then be presented directly by annotating source code.
5

2 DesignThe basis of our research on SVM is SVM-Fortran [14] and several SVM implementation onParagon. The overall design is outlined in Figure 1.
Locality Analyzer Optimizer

SVM-Fortran Compiler
+ native F77 Compiler

Paragon + SVM implementation

SVM-Fortran
- SPMD model
- parallel sections & loops
- shared & private variables

- allocatable processor sets
- work distribution templates
- user guided dynamic distributions

OPAL PARvis

Figure 1: SVM-Fortran programming environmentSVM-Fortran is a shared memory programming extension of FORTRAN 77 aiming at languagesupport for optimizing data locality. Its main features are outlined in the next section. Thetarget system is Intel Paragon for which multiple research groups are developing SVM imple-mentations. We plan to use the external servers MYOAN (IRISA) [2] and MAX (TU M�unchen)[3], and ASVM (Intel ESDC), a kernel implementation of SVM.On top of SVM-Fortran we will provide programming tools. OPAL (Optimizer and LocalityAnalyzer) will combine our performance analysis techniques with source code optimizations.In addition, PARvis will be available to analyze the behaviour of SVM-Fortran programs byvisualization techniques. PARvis is another tool which is provided to analyze SVM-Fortrantrace �les. It gives the user insight in the dynamic behaviour of the application by visualizationtechniques and by gathering statistics on arbitrary intervals of the total runtime.In the following we describe the general performance analysis concept for SVM-Fortran pro-grams and the design of OPAL.Figure 2 gives a detailed overview of the performance analysis cycle. The user can start byspecifying own trace regions via directives (A). Trace regions are code sections for which speci�cruntime information can be traced. Most regions the user might be interested in are trace regionsby default, such as subroutines and parallel loops.If the user does not want to specify own trace regions he can directly start by compiling the codefor performance analysis with the SVM-Fortran compiler and the native compiler of the targetsystem (B). The SVM-Fortran compiler inserts speci�c hooks to trace runtime information.In the second phase, trace requests are speci�ed for individual trace regions in a trace request�le which is input to the execution and guides runtime tracing.The SVM-Fortran compiler translates the SVM-Fortran program into a FORTRAN 77 programand generates some mapping information in the program information �le. For example, allshared variables in a subroutine are numbered consecutively and variables are identi�ed atruntime via these numbers. This mapping is used to implement trace requests for speci�cvariables. 6

control flow
data flow

trace request
specification

compilation
for performance analysis

A

B

SVM-Fortran
program

trace information

program
mapping information

trace
request file

performance analysis
database

C

performance analysis

trace analysis
program analysis

user trace region
specification

execution

Figure 2: SVM-Fortran performance analysis7

During execution, events are written to a trace �le according to the trace requests. Events aregenerated in two di�erent locations: the SVM-kernel and the SVM-Fortran runtime library.The runtime library will read events from a kernel event bu�er and a program event bu�er andwill write the events in the trace format described in this document.Trace events are used in the analysis step in combination with information gathered from thesource code to identify performance bottlenecks. The compiler's mapping information is neededin this step to correctly relate trace information to the source code.If performance bottlenecks cannot be identi�ed precisely with the available information (exit C)the trace request �le can be adapted and more information be gathered without recompilation.All information used in performance analysis is combined in a database.OPAL will assist the user in all performance analysis phases:1. user trace region speci�cationThe tool generates directives for interactively marked code sections.2. trace request speci�cationOPAL will support trace request speci�cation in three modes. It will provide the menu-driven analysis of trace information and the menu-driven speci�cation of trace requests.This mode frees the user from the subtle trace request syntax.An advanced interactive mode will guide the user in analyzing the available informationand will suggest additional requests. This mainly facilitates handling of big applications.In an automatic mode OPAL will automatically go through the performance analysis stepsand determine performance bottlenecks via the incremental analysis outlined in Figure 2.3. performance analysisOPAL will provide a source code based interface to manually analyze trace data. Basedon runtime information, e.g. loop bounds and iteration distribution, OPAL may predictperformance information by taking into account static program information. In addition,OPAL will have an automatic analysis mode in which it gathers information and willpoint the user to the speci�c problems of his code.
8

3 SVM-Fortran ConceptsSince the performance analysis environment of SVM-Fortran is source-code based, the traceformat re
ects the language features. In the following we give a very brief overview of SVM-Fortran. More details can be found in [14].SVM-Fortran is a shared memory parallel Fortran 77 extension targeted mainly towards dataparallel applications on shared virtual memory (SVM) systems. The main application area isbroader than that of HPF and Vienna Fortran. SVM-Fortran supports coarse grained functionalparallelism where the parallel tasks itself can be data parallel.The execution model of SVM-Fortran is an extension of the Single-Program-Multiple-Data(SPMD) model [15] which is well-known for its low-overhead parallel execution and is best-suited for hierarchical memory machines. Processors are allocated to the parallel applicationwhen it is started and are available until program termination.SVM-Fortran supports nested parallelism. At program start the entire computation forms asingle task. A task is some computational work. Tasks can be dynamically decomposed intosubtasks, e.g. via a parallel section or a parallel loop construct, i.e. each section and each loopiteration is an independent task. A task is either assigned to a single processor or to a set ofprocessors which execute the task cooperatively. The set of processors executing a task is calledthe task's active processor set (APS). The active processors execute the task either in exclusivemode or in replicated mode. In exclusive mode only one processor, the APS leader, performsthe actual computation whereas in replicated mode all processors execute the same code. Thedefault execution mode is exclusive mode.SVM-Fortran provides the standard features of shared memory parallel Fortran languages,i.e. shared and private data, multi-dimensional parallel loops and parallel sections, classicalsynchronization operations as well as SVM-speci�c synchronization such as variable lockingand atomic update.SVM-Fortran provides speci�c features to determine the distribution of tasks onto processors.Similar to Fortran-S and KSR Fortran loop annotations can be used to determine a staticor dynamic work distribution scheme. Examples for loop-level scheduling are BLOCK andCYCLIC as well as self scheduling and a�nity scheduling [16].Data locality is not a problem to be solved on the level of individual do-loops but is a globalproblem. Therefore, SVM-Fortran borrowed the concepts of processors arrangements and tem-plates from HPF as tools to specify scheduling decisions globally via template distributions.Parallel loops can use prede�ned scheduling or semi-dynamic scheduling. In prede�ned schedul-ing loop iterations are assigned to processors according to the distribution of the appropriatetemplate element. In semi-dynamic scheduling templates are distributed according to dynamicscheduling decisions. Thus, a dynamic scheduling decision can be applied to subsequent loopsto ensure data locality.Templates can be handled very
exible. They can be created dynamically, distributed and re-distributed at any point in the program and passed via the subroutine interface. SVM-Fortransupports standard distributions like BLOCK, CYCLIC, and GENERAL BLOCK, indirect dis-tributions and linked distributions. Indirect distributions allow the user to use arbitrary integerexpressions in the speci�cation of the target processor. Linked distribution is a form of align-ment where a distribution is described via the distribution of another template.9

Example 3.1:SUBROUTINE G(....,T,N,...)CSVM$ TEMPLATE:: T(10,10) ! fixed size templateCSVM$ TEMPLATE:: T1(N,N) ! automatic templateCSVM$ TEMPLATE:: T2(:,:) ! creatable templateCSVM$ PROCESSORS:: P(2,2)CSVM$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: T1M=...CSVM$ PDO(LOOPS(I,J),STRATEGY(ON_HOME(T1(I,J))))DO I=1,MDO J=1,M...ENDDOENDDOCSVM$ CREATE:: T2(M,M)CSVM$ REDISTRIBUTE (BLOCK,BLOCK) ONTO P :: T2CSVM$ PDO(LOOPS(I,J),STRATEGY(ON_HOME(T2(I,J))))DO I=1,MDO J=1,M...ENDDOENDDOCSVM$ PDO(LOOPS(I,J),PROCESSORS(P),STRATEGY(BLOCK,BLOCK))DO I=1,10DO J=1,10...ENDDOENDDOThis example illustrates templates as well as the scheduling features of SVM-Fortran. TemplateT is a �xed size template that is an argument of the subroutine. The shape of the local templateT1 is determined at runtime and depends on the argument N. The shape of the creatable templateT2 is adapted to the iteration space of the �rst two loops.The �rst two loops use prede�ned scheduling according to a template's distribution. Since Tis not adapted to the iteration space the resulting load balance may not be optimal. Whenadapting the size of template T2 to the iteration space the template's distribution leads to amuch better load balance for the second loop.The third loop uses static loop-level scheduling. This feature is useful if the programmer doesnot want to declare and use templates for scheduling.10

4 Trace formatThe trace format was de�ned within the APPARC project. It consists of kernel events andlanguage events. The format of the kernel events is common to MYOAN, MAX, and ASVM,whereas the language events are speci�c to SVM-Fortran.The events are de�ned in the standard SDDF format [17]. This format was chosen sincethe structure of the individual records can easily be changed without complex changes to theI/O-components of the tools. Furthermore, di�erences in the data representation between theparallel system and the platform of the analysis tool are handled automatically by the SDDFlibrary.4.1 Kernel EventsThe following table speci�es the events generated by the SVM implementation and the reasonor location where the event is generated.Event Locationread-page-fault-sum trace region exitwrite-page-fault-sum trace region exitread-page-fault-serviced read page faultwrite-page-fault-serviced write page faultinvalidate-copy receipt of invalidationreduce-access-permission receipt of read access requestpage-travel trace region exito-page-dist start/end of trace regionc-page-dist start/end of trace regionpage-out page is paged outIn the following description of the events node id is meant to be a global node number relatedto the program, thus a number between 0 and NUMPROCS()-1. Some events include the pairdata start address and data end address which speci�es a memory area for which the data weregathered. This is used when information is traced only for speci�c variables.The events o-page-dist and c-page-dist capture the current distribution of pages. This globalinformation is needed when, for example, more detailed tracing is required for a parallel loop,e.g. individual page faults, or when static program analysis is applied to predict performancecharacteristics.The events provide data of di�erent granularity. While o-page-dist and c-page-dist capturethe current page distribution only, read-page-fault-sum,page-travel, and read-page-fault-serviced give more and more detailed information.The following list describes the individual events:
11

read-page-fault-sum event record.Read page faults are counted in a trace region for a speci�c data address range.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationdata start address Start address to count read page faults fordata end address End address to count read page faults fornumber of page faults Number of read page faults in the addressrangewrite-page-fault-sum event record.Write page faults are counted in a trace region for a speci�c data address range.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationdata start address Start address to count write page faults fordata end address End address to count write page faults fornumber of page faults Number of write page faults in the addressrangeread-page-fault-serviced event record.A read page fault has occurred and is serviced:node id Processor identi�cationfault clock microseconds Time when the read page fault occurredsegment id Data segment identi�cationfaulting address Exact faulting addressfaulting page number Number of the faulting pageinstruction address Instruction that caused the read page faultnode id that sent the page Processor identi�cation of the sending nodeserviced clock microseconds Time when the page was received on thefaulting nodewrite-page-fault-serviced event record.A write page fault has occurred and is serviced:node id Processor identi�cationfault clock microseconds Time when the write page fault occurredsegment id Data segment identi�cationfaulting address Exact faulting addressfaulting page number Number of the faulting pageinstruction address Instruction that caused the write page faultnode id that sent the page Processor identi�cation of the sending nodeserviced clock microseconds Time when the page was received on thefaulting node
12

invalidate-copy event record.A write page fault has occurred and caused the invalidation of a copy of the page.node id Processor identi�cationclock microseconds Time when the page was invalidatedsegment id Data segment identi�cationfaulting address Exact faulting address (remote task)faulting page number Number of the faulting pagerequesting node Processor identi�cation of thesending nodereduce-access-permission event record.A read page fault has occurred and caused the change of access permission of the pagefrom write to read-only.node id Processor identi�cationclock microseconds Time when the page was invalidatedsegment id Data segment identi�cationfaulting address Exact faulting address (remote task)faulting page number Number of the faulting pagerequesting node Processor identi�cation of thesending nodepage-travel event record:This event record re
ects the traveling of pages covering a speci�c address range betweenthe processors in a trace region. Every processor records how many pages it has receivedfrom the other processors.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationdata start address Start address to count page transfers fordata end address End address to count page transfers fornumber of received pages The i{th element of this array re
ects thenumber of pages received from processor i.o-page-dist event record:The o-page-dist event states the current distribution of writable pages of a speci�c dataaddress range. Every processor records the number of owned pages and the page numbersof these pages.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationdata start address Start address to count the distribution fordata end address End address to count the distribution fornumber of owned pages Number of owned pagesowned pages List of owned pages
13

c-page-dist event record:The c-page-dist event states the current distribution of read-only pages of a speci�c dataaddress range. Every processor records the number of copies and the page numbers ofthese copied pages.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationdata start address Start address to count the distribution fordata end address End address to count the distribution fornumber of copied pages Number of copied pagescopied pages List of copied pagespage-out event record:A page is paged out to the backing store or another node due to lack of memory space.node id Processor identi�cationclock microseconds Time stampsegment id Data segment identi�cationpage number Number of the pagetarget node node id of target node

14

4.2 SVM-Fortran Language EventsThe events include the following program text information, generated in the program informa-tion �le by the SVM-Fortran compiler:� subprogram numberEach user subprogram can be identi�ed by this number.� directive numberThe SVM-Fortran directives of each subprogram are numbered consecutively accordingto their textual appearance in the subprogram.� variable numberFor each subprogram all shared variables can be identi�ed by this unique number.Some events specifying information global to the active processor set (APS) are written onlyby its leader. Whether an event is such a global event is speci�ed within the following eventspeci�cations.Table 1 gives an overview of the possible events generated for SVM-Fortran language constructs.The following abbreviations are used:all region start events: o-page-distc-page-distall region stop events: page-travelread-page-fault-sumwrite-page-fault-sumThe trace requests in the trace request �le determine which of these events are generated duringexecution on the basis of individual trace regions.4.2.1 Global SchedulingEvent Locationtrace-region-start trace region entrytrace-region-stop trace region exittemplate-info TEMPLATE, CREATE directivestemplate-dist DISTRIBUTE, REDISTRIBUTE directivesundef-template UNDEF directivedestroy-template DESTROY directiveproc-arrangement PROCESSORS directivepdo-info PDO directivepdo-iteration-space end of PDOsection-info SECTION of a PSECTIONaps-info PDO, SECTION directivesvariable-mapping shared variable declarationThe event records template-info, template-dist and proc-arrangement are traced throughthe whole program regardless of the currently de�ned trace regions because it is possible to passtemplates and processor arrangements through the subprogram interface.15

Directive/Location EventsCRITICAL SECTION wait-crit-sec-startwait-crit-sec-stopCRITICAL SECTION END exit-crit-secLOCK wait-lock-startwait-lock-stopLOCK END release-lockATOMIC UPDATE wait-lock-startwait-lock-stopPROCESSORS proc-arrangementTEMPLATE template-infoUNDEF undef-templateCREATE template-infoDESTROY destroy-temlateDISTRIBUTE template-distREDISTRIBUTE template-distREPLICATED REGION trace-region-startall region start eventsREPLICATED REGION END all region stop eventswait-barrier-startwait-barrier-stoptrace-region-stopEXCLUSIVE REGION trace-region-startall region start eventsEXCLUSIVE REGION END all region stop eventswait-barrier-startwait-barrier-stoptrace-region-stop

Directive/Location Eventsuser subroutine start trace-region-startall region start eventsuser subroutine stop all region stop eventstrace-region-stopSHARED mapping-eventPDO trace-region-startpdo-infoaps-infoall region start eventsend of PDO template-distall region stop eventswait-barrier-startwait-barrier-stoppdo-iteration-spacetrace-region-stopPSECTION trace-region-startall region start eventsSECTION section-infoaps-infoall region start eventsPSECTION END all region stop eventswait-barrier-startwait-barrier-stoptrace-region-stopBARRIER wait-barrier-startwait-barrier-stopBARRIER CHECKIN barrier-checkinBARRIER CHECKOUT wait-bcheckout-startwait-bcheckout-stop
Table1:SVM-Fortrandirectivesandevents16

trace-region-start event record:A process begins to work in a trace region.node id Processor identi�cationclock microseconds Time when the trace region is exitedsubprogram number Trace region identi�cationdirective numbertrace region type subroutine, psection, pdo, replicated regionor exclusive regiontrace-region-stop event record:A process stops working in a trace region.node id Processor identi�cationclock microseconds Time when the trace region is exitedsubprogram number Trace region identi�cationdirective numbertrace region type subroutine, psection, pdo, replicated regionor exclusive regiontemplate-info event record:Information about a template is written by the APS leader.node id Processor identi�cationclock microseconds Time stamptemplate id Template identi�cationsubprogram numberdirective numbernumber of dimensions Number of dimensionstemplate shape Template shapetemplate-dist event record:The template-dist event holds the distribution of a template. Instead of writing thetemplate directly, i. e. for every template element write the processor number that ownsthis element, we suggest writing the inverse function of the template distribution: everyprocessor writes his own local elements of the template.node id Processor identi�cationclock microseconds Time stamptemplate id Template identi�cationowned indices Template indices that the processor ownsundef-template event record:The undef-template event occurs if a template is set unde�ned.node id Processor identi�cationclock microseconds Time stamptemplate id Template identi�cationdestroy-template event record:The destroy-template event occurs if a creatable template is no longer needed and de-stroyed with a DESTROY directive.node id Processor identi�cationclock microseconds Time stamptemplate id Template identi�cation17

proc-arrangement event record:Information about a processor arrangement is written by the leader of the active processorset.node id Processor identi�cationclock microseconds Time stampproc arrangement id Processor arrangement identi�cationsubprogram numberdirective numbernumber of dimensions Number of dimensionsshape of dimensions For every dimension start and end indexpids Processor identi�cations of the processorsin column{major orderpdo-info event record:A parallel loop is encountered by the active processor set and the leader writes thepdo-info event record.node id Processor identi�cationclock microseconds Time stampsubprogram number PDO identi�cationdirective numberproc arrangement id Processor arrangement identi�cationproc arrangement shape user-speci�ed shapeblock cyclic length user-speci�ed block length(loop-level scheduling)const template indices values of constant indices(prede�ned scheduling,dynamic scheduling)pdo-iteration-space event record:At the end of a parallel loop the APS leader writes the pdo-iteration-space event record.node id Processor identi�cationclock microseconds Time stampsubprogram number PDO identi�cationdirective numberiteration space for each loop 9 valuesmin (lower bound, upper bound, stride)max (lower bound, upper bound, stride)increment (lower bound, upper bound, stride)0 - no increment or variable incrementvalue - constant increment
18

section-info event record:One section of a parallel section is processed. The leader of the new formed APS writesthe section-info event record. The proc arrangement id and shape of dimensionsare optional.node id Processor identi�cationclock microseconds Time stampsubprogram number SECTION identi�cationdirective numberproc arrangement id Processor arrangement identi�cation thatworks on this sectionshape of dimensions For every dimension start and end indexaps-info event record:A new active processor set is formed and the leader of the APS writes the numbers ofthe involved processors.node id Processor identi�cationclock microseconds Time when the trace region is exitedpids Processor identi�cations of the processorsvariable-mapping event record:VM-address of shared variables.node id Processor identi�cationclock microseconds Time stampsubprogram numbervariables/address List of variable number/VM-address pairs4.2.2 SynchronizationSVM{Fortran o�ers several operations (barrier, lock, critical section, barrier checkin and check-out) to synchronize cooperating processes. In order to detect load imbalances or just to �gureout how much time the processes spend waiting for each other we introduce the following eventrecords. Event Locationwait-barrier-start explicit or implicit BARRIERwait-barrier-stop explicit or implicit BARRIERbarrier-checkin BARRIER CHECKIN directivewait-bcheckout-start BARRIER CHECKOUT directivewait-bcheckout-stop BARRIER CHECKOUT directivewait-lock-start LOCK directivewait-lock-stop LOCK directiverelease-lock LOCK directivewait-crit-sec-start CRITICAL SECTION directivewait-crit-sec-stop CRITICAL SECTION directiveexit-crit-sec CRITICAL SECTION directive19

wait-barrier-start event record.A process starts waiting at a barrier.node id Processor identi�cationclock microseconds Time stampsubprogram number BARRIER identi�cationdirective numberwait-barrier-stop event record.A process stops waiting at a barrier and proceeds with its work.node id Processor identi�cationclock microseconds Time stampsubprogram number BARRIER identi�cationdirective numberbarrier-ckeckin event record.A process enters a barrier via a BARRIER CHECKIN directive.node id Processor identi�cationclock microseconds Time stampsubprogram number BARRIER identi�cationdirective numberwait-bcheckout-start event record:A process starts to wait at a BARRIER CHECKOUT directive until all other cooperatingprocesses have arrived at the corresponding BARRIER CHECKIN directive.node id Processor identi�cationclock microseconds Time stampsubprogram number BARRIER CHECKOUT identi�cationdirective numberwait-bcheckout-stop event record:A process stops waiting at a BARRIER CHECKOUT directive.node id Processor identi�cationclock microseconds Time stampsubprogram number BARRIER CHECKOUT identi�cationdirective numberwait-lock-start event record:A process wants to access a variable that is guarded by a lock and starts waiting on thelock to become free.node id Processor identi�cationclock microseconds Time stampsubprogram number LOCK identi�cationdirective numberlocking address Address pairs of locked memory locations20

wait-lock-stop event record:A process gets access to a variable that is guarded by a lock.node id Processor identi�cationclock microseconds Time stampsubprogram number LOCK identi�cationdirective numberrelease-lock event record:A process releases a lock.node id Processor identi�cationclock microseconds Time stampsubprogram number LOCK identi�cationdirective numberwait-crit-sec-start event record:A process wants to enter a critical section and starts to wait.node id Processor identi�cationclock microseconds Time stampsubprogram number CRITICAL SECTION identi�cationdirective numberwait-crit-sec-stop event record:A process is allowed to enter a critical section and stops waiting.node id Processor identi�cationclock microseconds Time stampsubprogram number CRITICAL SECTION identi�cationdirective numberexit-crit-sec event record:A process is exits a critical section.node id Processor identi�cationclock microseconds Time stampsubprogram number CRITICAL SECTION identi�cationdirective number4.2.3 SVM Run-Time SupportThe mapping of shared segments into the virtual address space of the executing task is monitoredto map page faults to variables.To overcome the problems introduced by false{sharing it is possible to change the coherencestrategy for a certain address space with the COHERENCE directive. The PREFETCH directiveenables to hide network transfer latencies by fetching data before it is needed.Event Locationshared-segment-address allocation of shared segmentcoherence-switch COHERENCE directiveprefetch PREFETCH directive21

shared-segment-address event record:The address in the virtual address space for a shared segment. is changed.node id Processor identi�cationclock microseconds Time stampsegment id Shared segment identi�cationaddress Start addresscoherence-switch event record:The coherence strategy for a shared or partially shared variable is changed.node id Processor identi�cationclock microseconds Time when the coherence is changedsubprogram number COHERENCE identi�cationdirective numbersegment id Data segment identi�cationdata start address Start address to change the coherence fordata end address End address to change the coherence forcoherence strategy New coherence strategytime microseconds Time needed to change the coherenceprefetch event record:Some shared or partially data is transferred to a processor on demand of a PREFETCHdirective.node id Processor identi�cationclock microseconds Time when the prefetch is initiatedsubprogram number PREFETCH identi�cationdirective numbersegment id Data segment identi�cationdata start address Start address of the data to be prefetcheddata end address End address of the data to be prefetched4.2.4 Overhead InformationSince the collection of trace information produces some overhead on the system it is necessaryto measure the time spent for trace actions. An equally important topic is the collection ofSVM overhead data.Event Locationtrace-overhead trace overheadsvm-overhead SVM runtime overheadkernel-trace-bu�er-over
ow trace bu�er over
owtrace-overhead event record:Time of speci�c trace overhead.node id Processor identi�cationclock microseconds Time stampduration microseconds overheadoverhead type type of overhead22

svm-overhead event record:Time of SVM overhead.node id Processor identi�cationclock microseconds Time stampduration microseconds overheadoverhead type type of overheadkernel-trace-bu�er-over
ow event record:The kernel trace bu�er that the event records are written to has over
own.node id Processor identi�cationclock microseconds Time stamp

23

5 User InterfaceWe already introduced the concept of trace regions that cover the interesting parts of theprogram. Trace regions can be nested, i.e. within a deeper nested trace region more speci�cinformation can be collected. In SVM-Fortran we de�ne the following program parts as implicittrace regions:� PROGRAM� SUBROUTINE� PDO� PSECTION� SECTION� REPLICATED REGION� EXCLUSIVE REGIONStage 0: All traces are switched o�Stage 1: trace-region-start+ trace-region-stop+ trace-overhead+ trace-over
owStage 2: Stage 1 + pdo-info+ section-info+ aps-info+ template-info+ template-dist+ undef-template+ destroy-template+ proc-arrangementStage 3: Stage 2 + Synchronization eventsStage 4: Stage 3 + read-page-fault-sum+ write-page-fault-sumStage 5: Stage 4 + page-travel+ o-page-dist+ c-page-dist+ coherence-switch+ prefetchStage 6: Stage 5 + read-page-fault+ write-page-fault+ invalidate-copyTable 2: Performance analysis stagesIn addition to the implicit trace regions, the user can de�ne trace regions with the directivesTRACE USER REGION and TRACE USER REGION END. User{de�ned trace regions shall �t into thestructure of prede�ned trace regions (PROGRAM, SUBROUTINE, PDO, PSECTION, SEC-TION, REPLICATED REGION, and EXCLUSIVE REGION). That means that a user{de�ned24

trace region can only appear inside of a subprogram. For example, if a TRACE USER REGION di-rective appears inside of a replicated region the corresponding TRACE USER REGION END directiveshall appear there, too.To remove some burden of work from the user, SVM{Fortran's performance monitoring providessome standard information stages that help to get trace data from a coarse to a �ne level. Thestages are de�ned in Table 2.The individual stages will be selectable via the trace request �le. The request �le is a sequenceof local and global trace requests. Local trace requests are related to individual trace regions,e.g. loop information request, whereas global requests are related to the entire code.All request can select special nodes, special trace regions, and individual variables. Variablesand subroutines are identi�ed by their names, and trace regions can be identi�ed either by thedo-loop label, a region number 1, or a user speci�ed label.The following syntax rules outline the structure of a trace request �le. OPAL will provide auser-friendly interface for the speci�cation of requests and will generate the appropriate entriesautomatically.

1Regions in a subroutine are numbered according to their textual appearance.25

Syntax:TraceRequestFile is <FileEntryList>FileEntry is <Comment>or CONFIG <Con�gType>speci�cation of con�guration parametersor INCLUDE <TR Filename>reads another trace �leor REQUEST <RequestEntry>individual requestsComment is %Con�gType is SVM TraceBuf Size: <Size>or SVM Kernel TraceBuf Size: <Size>or SVM TraceStage: <StageNo>speci�cation of a tracing stageRequestEntry is [(<NodeSpec>)] <GlobalReq>or [(<NodeSpec>)] <LocalReq>NodeSpec restricts this request to the speci�ednodes.NodeSpec is <NodeList>or *NodeList is NodeNo[,<NodeList>]or <NodeRange>[,<NodeList>]NodeRange is NodeNo-NodeNoGlobalReq is GLOBAL <GlobalReqList>LocalReq is LOCAL <LocalReqEntry>)
26

Syntax:GlobalReqList is <GlobalReqType>[,<GlobalReqList>]GlobalReqType is MappingInfovariable mappingtemplate mappingprocessor arrangement mappingor TrOverheador KernBufOverflowor *LocalReqEntry is <SubName>.<RegIdent>:<LocalReqList>SubName is Name of Subroutineor @MAIN main programor * all user subprogramsRegIdent is PDO LABEL (<LabelSpec>)or REG LABEL (<LabelSpec>)user-speci�ed labelor REG NO (<LabelSpec>)or * all trace regionsLocalReqList is (<LocalReqType>)[,<LocalReqList>]LocalReqType is <SVMInfo>or <SyncInfo>or <LangInfo>)
27

Syntax:SVMInfo is RPFSum[<Varlist>]or WPFSum[<Varlist>]read and write page fault sumsor RPF[<Varlist>]or WPF[<Varlist>]individual page faultsor InvalCopy[<Varlist>]invalidation informationor PageTravel[<Varlist>]page travel informationor OwnPageDist[<Varlist>]or CurPageDist[<Varlist>]page distribution informationor PageOut[<Varlist>]paging to other nodes or disksor SVMOverheadSVM runtime overheador *.SVMInfo[<Varlist>]all previous requestsSyncInfo is BARRIERor LOCKor WaitCriticalor *.SyncInfoLangInfo is REGION start and stop time of regionsor PDOInfoscheduling and iteration space informationor SECTIONInfoscheduling informationor APSInfochanges in the APS for parallel loops and parallelsectionsor CoSwitchor Prefetchor *.LangInfoall previous requestsVarlist is <VariableName>[,<Varlist>] 328

6 StatusSVM-Fortran is becoming more and more a stable language. There will be a reference manualin a few months. The compiler is currently working as a prototype implementing a single levelof parallelism, global work distribution constructs, and synchronization features.PARvis is a full functioning tool that will be used on the traces as soon as the SVM implemen-tation will be able to generate the trace information. Currently an ASVM prototype is used onKFA's Paragon. This prototype does not include performance analysis support. This will beadded in the next months.We are currently designing the performance analysis part of OPAL and will have a �rst imple-mentation of the menu-driven mode by the end of this year.ThanksI would like to thank Thierry Priol for his cooperation in designing the kernel trace format andmy colleaques Andreas Krumme and Sel�cuk �Ozmen for providing me with the grammar of thetrace request �le and for their helpful comments in preparing this document.

29

References[1] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, Ph.D. Dissertation,Yale University 1986, Technical Report YALEU/DCS/RR-492[2] G. Cabillic, Th. Priol, I. Puaut, MYOAN: an Implementation of the KOAN SharedVirtual Memory on the Intel Paragon, IRISA, Technical Report No. 812, April 1994[3] R.G. Hackenberg, MaX - Investigating Shared Virtual Memory, High-PerformanceComputing and Networking, Lecture Notes in Computer Science, Springer Verlag, Mu-nich, Germany, April 94[4] HPFF, High Performance Fortran Language Speci�cation, High Performance FortranForum, May 1993, Version 1.0, Rice University Houston Texas[5] Th. Bemmerl, O. Hansen, Th. Ludwig, PATOP for Performance Tuning of ParallelPrograms, H.Burkhart (Ed.), Proceedings CONPAR 90 - VAPP IV, LNCS 457, 756-765, Z�urich, 1990[6] M.T. Heath, J.E. Finger, ParaGraph: A tool for visualizing performance of parallelprograms, ParaGraph User Guide, Oak Ridge National Laboratory, December 1993[7] B. Thomas, K. Peinze, Suprenum comfort of parallel programming, Supercomputer,Vol.6, No. 2, pp. 31-43, 1989[8] D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields, B.W. Schwartz, AnOverview of the Pablo performance Analysis Environment, Technical Report, Univer-sity of Illinois, Department of Computer Science, 1992[9] W.E. Nagel, A. Arnold, Performance Visualization of Parallel Programs - The PARvisEnvironment - , Caltech Technical Report, CCSF-47, May 1994[10] Kendall Square Research Corp., KSR/Series Performance Analysis, KSR/Series Man-uals, Waltham, 1993[11] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, A. Schwald, Vienna Fortran - Alanguage Speci�cation Version 1.1, University of Vienna, ACPC-TR 92-4, March 1992[12] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.W. Tseng, An Overview of theFortran D Programming System, Rice University, Rice COMP TR91-154, March, 1991[13] T. Fahringer, H. Zima, A Static Parameter based Performance Prediction Tool forParallel Programs, Proceedings ICS'93, Tokyo, pp.207-219, 1993[14] R. Berrendorf, M. Gerndt, W. Nagel, J. Pr�ummer, SVM-Fortran, Interner BerichtKFA-ZAM-IB-9322, Zentralinstitut f�ur Angewandte Mathematik, ForschungszentrumJ�ulich, 1993[15] F. Darema-Rogers, V.A. Norton, G.F. P�ster, Using a Single-Program-Multiple-DataComputational Model for parallel Execution of Scienti�c Applications, Research ReportRC 11552 (#51726) 11/19/85, IBM Watson Research Center Yorktown Heights, 1985[16] M.A. Linn, Untersuchungen zur Ablaufplanung bei Parallelrechnern mit virutellgemeinsamem Speicher, Dissertation, to be published, 1994[17] Ruth A. Aydt, The Pablo Self{De�ning Data Format, Department of Computer Sci-ence, University of Illinois, Urbana, Illinois 61801, 199330

A SVM{Kernel SDDF Trace Format#1001:// "event" "sum of read page faults""read-page-fault-sum" {int "node id";double "clock microseconds";int "segment id";int "data start address";int "data end address";int "number of page faults";};;#1002:// "event" "sum of write page faults""write-page-fault-sum" {int "node id";double "clock microseconds";int "segment id";int "data start address";int "data end address";int "number of page faults";};;#1003:// "event" "read page fault occur and service""read-page-fault-serviced" {int "node id";double "fault clock microseconds";int "segment id";int "faulting address";int "faulting page number";int "instruction address";int "node id that sent the page";double "serviced clock microseconds";};;#1004:// "event" "write page fault occur and service""write-page-fault-serviced" {int "node id";double "fault clock microseconds";int "segment id";int "faulting address";int "faulting page number";int "instruction address";int "node id that sent the page";double "serviced clock microseconds";};; 31

#1005:// "event" "invalidation message received""invalidate-copy" {int "node id";double "clock microseconds";int "segment id";int "faulting address";int "faulting page number";int "requesting node id";};;#1006:// "event" "reduce access permission""reduce-access-permission" {int "node id";double "clock microseconds";int "segment id";int "faulting address";int "faulting page number";int "requesting node id";};;#1007:// "event" "page travel for a specific data region""page-travel" {int "node id";double "clock microseconds";int "segment id";int "data start address";int "data end address";int "received pages"[];};;#1008:// "event" "distribution of writable pages""o-page-dist" {int "node id";double "clock microseconds";int "segment id";int "data start address";int "data end address";int "number of owned pages";int "owned pages"[];};;
32

#1009:// "event" "distribution of read-only pages""c-page-dist" {int "node id";double "clock microseconds";int "segment id";int "data start address";int "data end address";int "number of copied pages";int "copied pages"[];};;#1010:// "event" "page out a page""page-out" {int "node id";double "clock microseconds";int "segment id";int "page number";};;

33

B SVM{Fortran SDDF Trace FormatB.1 Global Scheduling#1301:// "event" "start a trace region""trace-region-start" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "trace region type";};;#1302:// "event" "stop a trace region""trace-region-stop" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "trace region type";};;#1303:// "event" "information about a template""template-info" {int "node id";double "clock microseconds";int "template id";int "subprogram number";int "directive number";int "number of dimensions";int "template shape"[][];};;#1304:// "event" "distribution of a template""template-dist" {int "node id";double "clock microseconds";int "template id";int "owned indices"[][];};;
34

#1305:// "event" "undefine a template""undef-template" {int "node id";double "clock microseconds";int "template id";};;#1306:// "event" "destroy a template""destroy-template" {int "node id";double "clock microseconds";int "template id";};;#1307:// "event" "arrangement of a processor set""proc-arrangement" {int "node id";double "clock microseconds";int "proc arrangement id";int "subprogram number";int "directive number";int "number of dimensions";int "shape of dimensions"[][];int "pids"[];};;#1308:// "event" "start a parallel loop""pdo-info" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "proc arrangement id";int "proc arrangement shape"[][];int "block cyclic length"[];int "const template indices"[];double "startup time microseconds";};; 35

#1309:// "event" "parallel loop iteration space""pdo-iteration-space" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "iteration space"[][];};;#1310:// "event" "start a section of a parallel section""section-info" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "proc arrangement id";int "shape of dimensions"[][];};;#1311:// "event" "new active processor set""aps-info" {int "node id";double "clock microseconds";int "pids"[];};;#1312:// "event" "shared variable mapping""variable-mapping" {int "node id";double "clock microseconds";int "subprogram number";int "variable address" [][]; // variable number, address};;
36

B.2 Synchronization#1101:// "event" "start waiting at a barrier""wait-barrier-start" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1102:// "event" "stop waiting at a barrier""wait-barrier-stop" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1103:// "event" "checking in for a barrier""barrier-checkin" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1104:// "event" "start waiting at a barrier checkout""wait-bcheckout-start" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1105:// "event" "stop waiting at a barrier checkout""wait-bcheckout-stop" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};; 37

#1106:// "event" "start waiting at a lock""wait-lock-start" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "locking address"[][];};;#1107:// "event" "stop waiting at a lock""wait-lock-stop" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1108:// "event" "release a lock""release-lock" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1109:// "event" "start waiting at a critical section""wait-crit-sec-start" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;#1110:// "event" "stop waiting at a critical section""wait-crit-sec-stop" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};; 38

#1111:// "event" "exit a critical section""exit-crit-sec" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";};;

39

B.3 Run-Time Support#1201:// "event" "shared segment address""shared-segment-address" {int "node id";double "clock microseconds";int "segment id";int "start address";};;#1202:// "event" "switch coherence strategy""coherence-switch" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "segment id";int "data start address";int "data end address";int "coherence strategy";double "time microseconds";};;#1203:// "event" "prefetch some data""prefetch" {int "node id";double "clock microseconds";int "subprogram number";int "directive number";int "segment id";int "data start address";int "data end address";};;
40

B.4 Trace Overhead#1401:// "event" "time for trace actions""trace-overhead" {int "node id";double "clock microseconds";double "duration microseconds";int "overhead type";};;#1402:// "event" "time for svm actions""svm-overhead-start" {int "node id";double "clock microseconds";double "duration microseconds";int "overhead type";};;#1403:// "event" "overflow of kernel trace buffer""kernel-trace-buffer-overflow" {int "node id";double "clock microseconds";};;

41

