000190271 001__ 190271
000190271 005__ 20210129215540.0
000190271 0247_ $$2doi$$a10.1007/978-1-4612-0263-9_16
000190271 0247_ $$2Handle$$a2128/8610
000190271 037__ $$aFZJ-2015-03182
000190271 1001_ $$0P:(DE-Juel1)132118$$aGrotendorst, J.$$b0$$eCorresponding Author$$ufzj
000190271 1112_ $$aMaple Summer Workshop and Symposium 1994$$cTroy, NY$$d1994-08-09 - 1994-08-13$$gMSWS'94$$wUSA
000190271 245__ $$aSymbolic-Numeric Computations for Problem-Solving in Physical Chemistry and Biochemistry
000190271 260__ $$aBoston, MA$$bBirkhäuser Boston$$c1994
000190271 29510 $$aMaple V: Mathematics and its Applications / Lopez, Robert J. (Editor)   ; Boston, MA : Birkhäuser Boston, 1994, Chapter 16 ; ISBN: 978-0-8176-3791-0 ; doi:10.1007/978-1-4612-0263-9
000190271 300__ $$a131-140
000190271 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1431931081_3903
000190271 3367_ $$033$$2EndNote$$aConference Paper
000190271 3367_ $$2ORCID$$aCONFERENCE_PAPER
000190271 3367_ $$2DataCite$$aOutput Types/Conference Paper
000190271 3367_ $$2DRIVER$$aconferenceObject
000190271 3367_ $$2BibTeX$$aINPROCEEDINGS
000190271 520__ $$aThe combination of symbolic and numeric computation techniques leads to new approaches for problem-solving in areas of applied mathematics and science. It is shown, in examples from Physical Chemistry and Biochemistry, how the use of a modern computer algebra system such as Maple enables an automatic and computerized solution of problems in ways that are not possible with conventional computing systems. In our first example we study the thermodynamic behavior of steam reforming reactions and determine the temperature and pressure dependence of the chemical compositions at equilibrium. Using Maple's symbolic computation capabilities a system of nonlinear equations for the reaction extents is derived. For the fast numerical solution of the nonlinear equations the Newton-Raphson algorithm is applied. A FORTRAN preprocessor in Maple calculates the Jacobian matrix needed for this algorithm and generates a complete and ready-to-compile FORTRAN program. In the second example we demonstrate how the McConnell equations in Biochemistry, a linear inhomogeneous system of differential equations with constant coefficients, can be solved analytically in a direct way by using Maple's symbolic linear algebra routines. In addition, the automatic generation of numerical code for the determination of the formal parameters involved in the solutions is described.
000190271 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000190271 588__ $$aDataset connected to CrossRef Book
000190271 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, J.$$b1$$ufzj
000190271 7001_ $$0P:(DE-HGF)0$$aSchoberth, S. M.$$b2
000190271 773__ $$a10.1007/978-1-4612-0263-9_16
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.pdf$$yOpenAccess
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.gif?subformat=icon$$xicon$$yOpenAccess
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000190271 8564_ $$uhttps://juser.fz-juelich.de/record/190271/files/ib-9414.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000190271 909CO $$ooai:juser.fz-juelich.de:190271$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000190271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132118$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000190271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129189$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000190271 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000190271 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000190271 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess
000190271 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000190271 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000190271 980__ $$acontrib
000190271 980__ $$aVDB
000190271 980__ $$aFullTexts
000190271 980__ $$aUNRESTRICTED
000190271 980__ $$aI:(DE-Juel1)VDB62
000190271 980__ $$aI:(DE-Juel1)JSC-20090406
000190271 9801_ $$aFullTexts
000190271 981__ $$aI:(DE-Juel1)JSC-20090406