001     19029
005     20180208225734.0
024 7 _ |2 DOI
|a 10.1021/jp204240n
024 7 _ |2 WOS
|a WOS:000293192100073
037 _ _ |a PreJuSER-19029
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB95363
|a Lennartz, M. C.
|b 0
|u FZJ
245 _ _ |a Identifying Molecular Orbital Energies by Distance-Dependent Transition Voltage Spectroscopy
260 _ _ |a Washington, DC
|b Soc.
|c 2011
300 _ _ |a 15025 - 15030
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 16841
|a Journal of Physical Chemistry C
|v 115
|x 1932-7447
|y 30
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work was funded by the DFG (Grant SPP1243). The computations were performed at JUROPA and JUGENE supercomputers at the Julich Supercomputer Centre, Forschungszentrum Julich, Germany.
520 _ _ |a Besides current-voltage spectroscopy, also transition voltage spectroscopy (TVS) becomes an interesting tool to investigate the energetic position of the molecular orbitals involved in the tunneling process. We used scanning tunneling spectroscopy to perform both spectroscopy techniques as a function of the tip-substrate distance. Employing our model system, benzoic acid on a Cu(110) surface, we could observe a step in the transition voltage using distance-dependent TVS. Combining the spectroscopic results with density functional theory based calculations, it was possible to identify the molecular orbitals responsible for charge transport. Moreover, it was found that different molecular orbitals are responsible for charge transport if varying STM tip-substrate distances are examined.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)130513
|a Atodiresei, N.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)130583
|a Caciuc, V.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)130751
|a Karthäuser, S.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)2256522-X
|a 10.1021/jp204240n
|g Vol. 115, p. 15025 - 15030
|p 15025 - 15030
|q 115<15025 - 15030
|t The @journal of physical chemistry / C
|v 115
|x 1932-7447
|y 2011
856 7 _ |u http://dx.doi.org/10.1021/jp204240n
909 C O |o oai:juser.fz-juelich.de:19029
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|g PGI
|x 4
970 _ _ |a VDB:(DE-Juel1)133748
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21