000019042 001__ 19042
000019042 005__ 20240610120531.0
000019042 0247_ $$2pmid$$apmid:22087580
000019042 0247_ $$2pmc$$apmc:PMC3253673
000019042 0247_ $$2DOI$$a10.1186/2046-1682-4-18
000019042 0247_ $$2WOS$$aWOS:000299412000001
000019042 0247_ $$2altmetric$$aaltmetric:575483
000019042 0247_ $$2ISSN$$a2046-1682
000019042 037__ $$aPreJuSER-19042
000019042 041__ $$aeng
000019042 082__ $$a570
000019042 1001_ $$0P:(DE-Juel1)VDB85299$$aHead, D.A.$$b0$$uFZJ
000019042 245__ $$aSpindles and active vortices in a model of confined filament-motor mixtures
000019042 260__ $$aLondon$$bBioMed Central$$c2011
000019042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019042 3367_ $$2DataCite$$aOutput Types/Journal article
000019042 3367_ $$00$$2EndNote$$aJournal Article
000019042 3367_ $$2BibTeX$$aARTICLE
000019042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019042 3367_ $$2DRIVER$$aarticle
000019042 440_0 $$025223$$aBMC Biophysics$$v4$$y18
000019042 500__ $$aFinancial support of this project by the European Network of Excellence "SoftComp" through a joint postdoctoral fellowship for DAH is gratefully acknowledged.
000019042 520__ $$aRobust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain.Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices.We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths.
000019042 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000019042 588__ $$aDataset connected to Web of Science, Pubmed
000019042 650_7 $$2WoSType$$aJ
000019042 7001_ $$0P:(DE-Juel1)VDB76215$$aBriels, W.J.$$b1$$uFZJ
000019042 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000019042 773__ $$0PERI:(DE-600)2600208-5$$a10.1186/2046-1682-4-18$$gVol. 4$$q4$$tBMC Biophysics$$v4$$x2046-1682$$y2011
000019042 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253673
000019042 909CO $$ooai:juser.fz-juelich.de:19042$$pVDB
000019042 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000019042 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019042 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019042 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019042 9141_ $$y2011
000019042 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000019042 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000019042 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000019042 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000019042 970__ $$aVDB:(DE-Juel1)133771
000019042 980__ $$aVDB
000019042 980__ $$aConvertedRecord
000019042 980__ $$ajournal
000019042 980__ $$aI:(DE-Juel1)IAS-2-20090406
000019042 980__ $$aI:(DE-Juel1)ICS-2-20110106
000019042 980__ $$aUNRESTRICTED
000019042 981__ $$aI:(DE-Juel1)IBI-5-20200312
000019042 981__ $$aI:(DE-Juel1)IAS-2-20090406
000019042 981__ $$aI:(DE-Juel1)ICS-2-20110106