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Article

Scalable detection of MPI-2 remote
memory access inefficiency patterns

Marc-André Hermanns2, Markus Geimer1, Bernd Mohr1, and
Felix Wolf1,2,3

Abstract
Wait states in parallel applications can be identified by scanning event traces for characteristic patterns. In our earlier
work we defined such inefficiency patterns for MPI-2 one-sided communication, although still based on a serial trace-
analysis scheme with limited scalability. In this article we show how wait states in one-sided communications can be
detected in a more scalable fashion by taking advantage of a new scalable trace-analysis approach based on a parallel replay,
which was originally developed for MPI-1 point-to-point and collective communication. Moreover, we demonstrate the
scalability of our method and its usefulness for the optimization cycle with applications running on up to 32,768 cores.

Keywords
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1 Introduction

Remote memory access (RMA) describes the ability of a

process to access all or parts of the memory belonging to

a remote process directly, without explicit participation

of the remote process in the data transfer. Since all

parameters for the data transfer are determined by a single

process, it is also called one-sided communication. This

programming model is made available to the programmer

often in the form of platform- or vendor-specific libraries,

such as SHMEM (Cray/SGI) or LAPI (IBM). In 1997,

one-sided communication was added to the portable MPI

standard with version 2 (Message Passing Interface Forum,

1997), and since then has been adopted by the majority of

the available MPI implementations.

Although it has been shown that the use of MPI-2 RMA

can improve application performance (Mirin and Sawyer,

2005), it has not yet been widely adopted among the MPI

user community. On the other hand, we believe that the

availability of suitable programming tools, in particular for

performance analysis, can encourage more developers to

exploit the benefits of this model. However, since increasing

demand for compute power in combination with recent

trends in microprocessor design towards multicore chips

forces applications to scale to much higher processor counts,

such tools must also be scalable in order to be useful.

A non-negligible fraction of the execution time of MPI

applications can often be attributed to wait states, which

occur when processes fail to reach synchronization points

in a timely manner, for example due to load imbalance.

Especially when trying to scale communication-intensive

applications to large processor counts, such wait states can

present severe challenges to achieving good performance.

In our earlier work (Kühnal et al., 2006) we have shown

how wait states related to MPI-2 one-sided communication

can be identified by searching event traces for characteris-

tic patterns. However, the search algorithm applied was

sequential and intended to operate on a single global trace

file, offering only limited scalability. Since then we have

developed a general framework to make the pattern search

in event traces more scalable (Geimer et al., 2009). Instead

of sequentially analyzing a single global trace file, the

framework analyzes multiple process-local trace files in

parallel while performing a replay of the target applica-

tion’s communication behavior. In this article we present

a synthesis of the two approaches, making the search for

wait states in the context of MPI- 2 RMA more scalable

by enacting a parallel replay of one-sided operations, which

had previously only been tried for two-sided and collective

operations. The new scalable detection scheme for one-

sided communication has been integrated into Scalasca
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(Scalasca, 2010), a performance analysis toolset specifically

designed for large-scale systems.

The remainder of this article is organized as follows.

Section 2 gives a brief overview of the work done on this

topic so far. The semantics of the MPI one-sided program-

ming model are explained in Section 3, before specifying

the supported MPI RMA inefficiency patterns and their

replay-based detection algorithms in Section 4. Results

with two RMA-based applications running on up to

32,768 cores demonstrate the scalability of our method and

its usefulness for the optimization cycle in Section 5.

Finally, Section 6 concludes this article and gives a brief

outlook on future work.

2 Related work

The number of portable performance-analysis tools support-

ing MPI-2 RMA is quite limited. The Paradyn tool, which

conducts an automatic on-line bottleneck search, supports

several major features of MPI-2 (Mohror and Karavanic,

2004). To analyze RMA operations it collects process-local

statistical data (i.e. transfer counts and time spent in RMA

functions), yet it does not take inter-process relationships into

account. By contrast, the TAU performance system (Shende

and Malony, 2006) supports profiling and tracing of MPI-2

one-sided communication, though only by monitoring the

entry and exit of RMA functions. Therefore, it neither pro-

vides RMA transfer statistics nor does it record the transfers

in tracing mode. Recently, the trace collection and visualiza-

tion toolset VampirTrace/Vampir (Knüpfer et al., 2008) was

extended to provide experimental support for MPI-2 one-

sided communication (Knüpfer, 2009).

In our previous work, we defined a formal event model

(Hermanns et al., 2005) as well as a number of characteris-

tic patterns of inefficient behavior that can arise in the

context of MPI-2 RMA communication (Kühnal et al.,

2006). The detection of these patterns was implemented

as an extension of the serial trace analyzer Kojak (Wolf and

Mohr, 2003) and constitutes the foundation for our new

scalable bottleneck detection algorithms.

One-sided communications are also closely related to

partitioned global address space (PGAS) languages, which

provide the abstraction of shared memory to the user while

internally converting all remote accesses to one-sided com-

munication calls. Some PGAS languages such as UPC also

support explicit one-sided communication. In this context,

the Parallel Performance Wizard (PPW) (Su et al., 2008) is

an automatic performance tool specifically designed for

PGAS languages. PPW supports the performance analysis

of programs written in such languages by providing so-

called generic operation types that are defined on top of

an RMA event model.

3 MPI-2 remote memory access

The interface for RMA operations defined by MPI differs

from vendor-specific APIs in many respects. This is to

ensure that it can be efficiently implemented on a wide

variety of computing platforms, even if a particular plat-

form does not provide any direct hardware support for

RMA. The design behind the MPI RMA API is similar

to that of weakly coherent memory systems: correct

ordering of memory accesses has to be specified by the

user with explicit synchronization calls; for efficiency,

the implementation can delay communication operations

until the synchronization calls occur.

MPI does not allow RMA operations to access arbi-

trary memory locations. Instead, they can access only

designated parts of the memory, which are called win-

dows. Such windows must be explicitly initialized with

a call to MPI_Win_create, and released with a call to

MPI_ Win_free, by all processes that either want to

expose or to access this memory. These calls are collec-

tive between all participating partners and may include

an internal barrier operation. By origin MPI denotes the

process that performs an RMA read or write operation,

and by target the process whose memory is accessed.

There are three RMA communication calls in MPI: MPI_-

Get to read from and MPI_Put and MPI_Accumulate – a var-

iant of MPI_Put with the possibility of using a reduction

operator – to write to the target window. MPI-2 RMA syn-

chronization falls in two categories: active target and passive

target synchronization. In active mode both processes, origin

and target, have to participate in the synchronization, whereas

in passive mode explicit synchronization occurs only on the

origin process. MPI provides three RMA synchronization

mechanisms:

Fences: The function MPI_Win_fence is used for active

target synchronization and is collective over the communi-

cator used when creating the window. RMA operations

need to occur between two fence calls.

General Active Target Synchronization (GATS): In

this scheme, synchronization occurs between a group

of processes that is explicitly supplied as a parameter

to the synchronization calls. A so-called access epoch

is started on an origin process by MPI_Win_start and

terminated by a call to MPI_Win_complete. The start

call specifies the group of targets for that epoch. Simi-

larly, an exposure epoch is started on a target process

by MPI_Win_post and completed by MPI_Win_wait or

MPI_Win_test. Again, the post call specifies the group

of origin processes for that epoch.

Locks: Finally, shared and exclusive locks are provided

for the so-called passive target synchronization through

the MPI_Win_lock and MPI_Win_unlock calls, which

enclose the access epoch for this window on the origin

process.

It is implementation-defined whether some of the

above-mentioned calls are blocking or non-blocking. For

example, in contrast to other shared memory programming

paradigms, the lock call may not be blocking. In the

remainder of this article we focus exclusively on active tar-

get synchronization. However, as part of our future work,

we plan to address also passive target synchronization.
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4 Automatic detection of RMA
inefficiency patterns

In this section we describe how the MPI RMA-related inef-

ficiency patterns defined in Kühnal et al. (2006), as well as

three new patterns, two of them time-based and one of them

counter-based, can be automatically detected in a scalable

way within the framework of the Scalasca performance-

analysis toolset. Scalasca is an open-source toolset that can

be used to analyze the performance behavior of parallel

applications and to identify opportunities for optimization.

As a distinctive feature, Scalasca provides the ability to

identify wait states in a program by searching event traces

for characteristic patterns. Such wait states occur, for

example, as a result of unevenly distributed workloads.

To make the trace analysis scalable, process-local traces

are analyzed in parallel without prior merging. This implies

that no knowledge is locally available about when in time a

specific remote event occurred. This information is trans-

ferred to the location where it is needed during the analysis

process. The central idea behind Scalasca’s parallel trace

analyzer is to reenact the application’s communication and

synchronization behavior recorded in the trace, analyzing

communication operations using operations of similar type.

For example, to detect wait-states related to point-to-point

message transfers, the events necessary to analyze such a

communication are exchanged between the participating

processes in point-to-point mode as well. This technique

relies on reasonably synchronized timestamps between the

different processes. On platforms without synchronized

clocks, a software correction mechanism is applied post

mortem (Becker et al., 2009). The scalability of the parallel

replay mechanism has already been demonstrated for up to

294,912 cores (Geimer et al., 2010).

Here, we apply the same methodology to MPI RMA

operations, that is, RMA transfers are used to exchange the

data required for the analysis. For this purpose, for each win-

dow tracked during measurement of the original application,

our analysis creates a window exposing a small memory buf-

fer during replay. The buffers are used by the origin and tar-

get processes to exchange data relevant to the specific

performance metrics. Specifically, these buffers comprise

four double-precision floating-point entries for timestamps,

as well as a bitfield large enough to accommodate a bit for

every process having this window defined. The ith bit in this

bitfield being set indicates at least one RMA access (put or

get) by the ith process in the corresponding communicator

during the ongoing epoch. Earlier, during trace acquisition

(i.e. at application runtime), Scalasca’s measurement layer

keeps track of all windows being created and records the

window definitions plus all synchronization and communi-

cation operations acting on these windows. When the replay

is performed during the analysis step, all those windows can

be recreated using the same set of processes based on the

recorded window definitions. The information needed for

the analysis is subsequently transferred using MPI_Get and

MPI_Accumulate operations.

To ensure that the access and exposure epochs are

available at the time when the analyzer processes the corre-

sponding part of the event trace, the synchronization

pattern used by the original application is reconstructed

during the replay. That is, synchronization on the exchange

window is triggered by the exit events recorded for the

RMA synchronization calls involved. The exit event for

MPI_Win_fence collectively synchronizes the exchange

window, whereas the exit of MPI_Win_start opens an

access epoch for the recorded group of processes, which

is closed whenever the exit event of the corresponding

MPI_Win_complete call is found. Similarly, an exposure

epoch is opened with the exit event of MPI_Win_post

and closed with the exit events of MPI_Win_wait or

MPI_Win_test. Please note that the analysis relies on cor-

rectly applied synchronization, which is why it may deadlock

in cases of erroneous synchronization by the application.

During the replay, specific call backs are triggered for

RMA-related events to detect the different inefficiency pat-

terns, as described below. For the sake of simplicity, the

individual actions taken are described in the context of the

respective pattern. However, to avoid transferring the same

data twice, our implementation actually combines all these

actions using a sophisticated notification and call-back

mechanism, thereby minimizing the communication costs

of the analysis.

Late Post The Late Post inefficiency pattern refers to

waiting time occurring during general active target syn-

chronization (GATS) operations of an access epoch that

block until access is granted by the corresponding exposing

process as depicted in Figure 1. Depending on the MPI

implementation, this may happen either during MPI_Win_

start (variant involving processes B and C) or MPI_Win_

complete (variant involving processes D and C). However,

the exact blocking semantics are usually not known. There-

fore, we use a heuristic to determine which calls are block-

ing. If and only if the enter event of the call to the latest

MPI_Win_post on the exposing processes (15) occurs

within the time interval of the MPI_Win_start call on the

accessing process (8,9), we assume that the call to MPI_

Win_start is blocking, and the waiting time is determined

by the time difference between entering the MPI_Win_post

operation (15) and entering MPI_Win_start (8), to which

the waiting time is finally ascribed. Likewise, waiting time

during the call to MPI_Win_complete is determined by the

accessing process, where the enter event of the complete

call (24) is used to calculate the waiting time. In the case

one of these calls is falsely assumed to be blocking, the

overall time spent in the call will be very small, resulting

in a negligible inaccuracy with respect to the overall sever-

ity of this pattern.

To detect the Late Post pattern, the following MPI RMA

operations occur during the replay: the exit event of the

MPI_Win_post call (16) triggers the start of the exposure

epoch on the target process after initializing the exchange

buffer with the timestamp of the post enter event (15) and

default values for all other fields. On the origin processes,
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the exit events of the call to MPI_Win_start (2,9,20)

trigger the start of the access epochs for the exchange

window and the post enter timestamp of each target pro-

cess is retrieved using MPI_Get. Accordingly, the exit

events of the calls to MPI_Win_complete (7,14,25) close

the access epoch and the post enter timestamps can be

accessed to locally determine the latest post. This time-

stamp can then be compared to the timestamps of the

locally available events to determine the Late Post variant

and finally calculate the waiting time if applicable. On

the target processes, the end of the exposure epoch is

ensured by calling MPI_Win_wait when reaching the cor-

responding exit event (18).

Early Transfer The Early Transfer pattern occurs when

an RMA operation blocks because the relevant exposure

epoch has not yet been started (Figure 1, processes A and

C). It is therefore similar to Late Post, and in fact requires

exactly the same data to be transferred (i.e. the post enter

timestamps), but the waiting time is attributed to the remote

access operation and therefore appears in the communica-

tion subtree of the time metrics in the analysis report

(Figure 2). As before, it can not easily be determined

whether the original RMA transfer call was actually block-

ing. However, we assume this to be the case if the corre-

sponding MPI_Win_post (15) call was issued on the

target side within the time interval of the remote access

in question (3,5). Since the post enter timestamps are only

accessible after closing the access epoch, a backward tra-

versal of the local event data is required, comparing the

timestamps recorded for each RMA operation with the

post enter timestamp of the corresponding target process.

If the RMA operation was non-blocking in the original run

of the application, the time falsely classified as waiting

time would again be very small.

Early Wait This pattern refers to the situation where the

exposing process is waiting for other processes to complete

the remote accesses of their access epoch (Figure 3). As the

call to MPI_Win_wait cannot return until all access epochs

have been finished, the time span between the enter event

of the call to MPI_Win_wait and the latest enter event of

the corresponding calls to MPI_Win_complete on the

accessing processes is counted as waiting time.

To detect the Early Wait pattern, the timestamps of the

enter events of calls to MPI_Win_complete (6,13) are

transferred to the target processes via MPI_Accumulate

using the MPI_MAX operator just before closing the access

epoch, thereby storing the latest enter timestamp of a corre-

sponding complete call in the target’s exchange buffer. The

waiting time can then be determined by subtracting the

timestamp of the wait enter event (17) from the latest com-

plete enter timestamp (6) stored in the exchange buffer. As

can be seen, the one-sided model naturally lends itself to

this type of analysis.

Late Complete Depending on whether an MPI imple-

mentation can achieve communication/computation over-

lap or not, access epochs should be as compact as

possible in the latter case. As the target process can close

the exposure epoch only after all access epochs have been

completed, waiting time in the Early Wait pattern that

occurs between the last RMA operation and the completion

of the respective access epoch is attributed to the Late

Complete pattern (Figure 3, hatched area), a sub-pattern

of Early Wait. As this waiting time occurs on the target

of the access epoch, one solution to reduce waiting time

can be moving the call of MPI_Win_complete closer to

the last RMA operation. This may, however, prevent

communication/computation overlap on the origin. The

user must therefore weigh the benefits of reducing

Figure 1. The Early Transfer and Late Post (in two variants) inefficiency patterns. The waiting time attributed to each pattern is marked
in dark gray. Origin and target roles are isolated in different processes – process C is the target for processes A, B, and D.
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waiting time on the target against losing overlap on the

origin. Alternatively, the user can also reduce the encap-

sulating Early Wait pattern by moving the call to MPI_-

Win_wait on the target to a later point in time, which

would address both the Early Wait and the Late Com-

plete patterns.

During the detection, each origin caches the exit event

of the latest RMA operation (5,12) separately for each

Figure 2. Screenshot of the CUBE analysis result browser. The Early Transfer inefficiency pattern is selected. This pattern is similar
to the Late Post pattern. However, it appears in the communication subtree of the metric tree as it indicates waiting time of RMA
operations, here MPI_Put.

Figure 3. The Early Wait (dark gray & hatched) and Late Complete (hatched) inefficiency patterns
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target. If no RMA operation is present in the access epoch,

the exit timestamp of the MPI_Win_start call is taken.

Then, all the origins of a given target transfer their cached

timestamp to the target via MPI_Accumulate using the

MPI_MAX operator just before closing the access epoch

while processing the exit events of the calls to MPI_Win_-

complete (7,14). There the maximum value obtained can

then be subtracted from the timestamp of the latest com-

plete enter event, which is already available from the Early

Wait detection algorithm.

Wait at Fence This pattern refers to a wait state during

the completion of a fence operation, as shown in Figure

4. Although MPI_Win_fence is a collective call, it may

not be synchronizing, depending on given assertions or

MPI-internal window status information. However, as

potentially all processes of the communicator may access

the local window, a confirmation is needed from the remote

processes that their access epoch on this window has ended.

This could be prevented, if the implementation supports it,

during some calls where an assertion is given that no put or

accumulate calls have to be handled. We assume a collec-

tive call of MPI_Win_fence to be globally synchronizing if

the timestamps of all associated enter events occur before

any exit event of the same fence call.

To detect the Wait at Fence pattern, the latest enter and

earliest exit timestamps of the fence (4,7) are determined

with a single MPI_Allreduce call using a user-defined oper-

ator. If the above-mentioned overlap criterion is met, the

difference between the latest enter event across all partici-

pating processes (4) and the local enter event (6) is counted

as waiting time.

Early Fence Waiting time for entering a fence before all

remote accesses have finished is attributed to the Early

Fence pattern, a sub-pattern of Wait at Fence (Figure 4,

hatched area). Here, all processes locally determine the lat-

est exit timestamp of their remote accesses (3) for each tar-

get and transfer them to the matching target processes via

accumulate, again using the MPI_MAX operator. These

transfers are surrounded by two calls to fence to ensure cor-

rect synchronization. In this way, the earliest possible com-

pletion of the latest RMA operation of all accessing origin

processes is determined and used to calculate the waiting

time of this pattern as the time difference between leaving

the latest RMA operation (3) and the local enter event of

the fence (6).

Unneeded Pairwise Synchronizations In MPI-2 RMA

active target synchronization, the user explicitly synchro-

nizes with a set of processes. The results of RMA opera-

tions issued before this synchronization become visible

only thereafter. Logically, every potential origin for a target

process has to inform the target process that no further

RMA operation will be issued for the current epoch. In calls

to MPI_Win_fence, an MPI implementation needs to syn-

chronize each process internally with every other process

in the communicator corresponding to the window the call

is issued on. There is no possibility for a process to derive

this information from local data other than the above-

mentioned assertion. This creates an internal synchroniza-

tion between origin and target, where the target has to wait

for an acknowledgement from potential origin processes

for the current exposure epoch. In cases where the origin

process issues no RMA operation for a target, this synchro-

nization still has to be done and will consume application

time. How much time is spent on these synchronizations

cannot be explicitly measured, so the costs of unneeded

synchronizations can only be estimated by the user

interpreting the performance data. The Unneeded Pairwise

Synchronizations pattern provides a count for all synchro-

nizations in MPI-2 RMA active target synchronization

without a preceding RMA operation. It is a subset of all

synchronizations done during those synchronization

calls. In this way, the user can then investigate this pattern

if MPI-2 RMA synchronization in general consumes a

major fraction of the application time.

To calculate the number of unneeded synchronizations,

the exchange buffer associated with every window contains

a bitfield, where the ith bit represents a remote access of the

process with rank i in the communicator associated with the

window to the local process. This bitfield is initialized with

all bits set to zero before each exposure epoch is started,

and then set by the accessing processes using MPI_Accu-

mulate with the binary-or operator MPI_BOR to set the bit

corresponding to its rank on the target process. At the end

of the exposure epoch, the target process then evaluates the

bitfield, counting the number of bits set and storing the dif-

ference of the expected origin count and the actual origin

count in this epoch as the severity of this pattern. The origin

processes accumulating the bit count cache each target

location and perform the actual accumulation only once

at the end of the access epoch.

5 Results

In this section we present results for two different MPI- 2

RMA codes. We took our measurements on the IBM Power6

575 cluster Jump and the IBM Blue Gene/P system Jugene

located at the Jülich Supercomputing Centre. The results

collected with up to 32,768 processes using 8 racks of the 72-

rack Blue Gene/P so far confirm that our approach scales

well even at very large processor configurations.

Figure 4. The Wait at Fence (dark gray & hatched) and Early
Fence (hatched) inefficiency patterns
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5.1 SOR solver

With the first code, SOR, we verified the scalability of our

analysis. SOR solves the Poisson equation using a red-black

successive over-relaxation method. The two main commu-

nication steps are halo-exchange and scalar reduction oper-

ations. The former was adapted to use MPI RMA instead of

the original non-blocking point-to-point communication.

The latter still uses MPI collective communication as

before. The global domain is a three-dimensional grid of

the size Nhoriz � Nhoriz � Nvert, which is partitioned along

the two horizontal dimensions using a 2D process mesh.

The communication pattern of this application is typical for

grid-point codes used in earth and environmental science.

The solver was configured to create measurements with

roughly the same number of events per process, and specif-

ically not to converge within the defined maximum number

of 1000 iterations. This enabled us to evaluate the weak-

scaling behavior of our analysis approach. The key num-

bers are given in Table 1. As can be seen, the total number

of events increases linearly with the number of cores. The

jumps in execution time of the application reflect different

numbers of grid points per process in each dimension.

Increasing the workload in the horizontal dimension there-

fore had a different impact on overall computation than

increasing the workload in the vertical dimension. How-

ever, as this only influenced the communication/computa-

tion ratio of the measurement, and neither the number of

per-process events nor the application’s communication

patterns, these effects are irrelevant for our evaluation.

The time exclusively needed for the replay analysis (i.e.

without loading the traces and writing the results, which

together took less than 55 seconds for the 32,768-core run)

is reasonably low. As seen in Figure 5 it roughly mimics the

overall scaling behavior of the application itself, which is to

be expected using our replay approach.

5.2 BT-RMA

To evaluate the usefulness of our analysis for application

optimization and to verify that the inefficiency patterns

described earlier appear in practice, we incrementally

developed a version of the BT benchmark from the NAS

Parallel Benchmark Suite 2.4 (Bailey et al., 1993), which

we called BT-RMA, that uses one-sided instead of non-

blocking point-to-point communication. The BT bench-

mark solves three sets of uncoupled systems of equations

in the three dimensions x, y, and z. The systems are block

tridiagonal with 5 � 5 blocks. The domains are decom-

posed in each direction, with data exchange in each dimen-

sion during the solver part, as well as a so-called face

exchange after each iteration. Those exchanges are imple-

mented using non-blocking point-to-point communication

in the original BT. Initial evaluations were conducted on the

IBM Power6 575 cluster Jump using the problem class D

on 256 cores in ST mode. For measurement, five purely

computational subroutines were excluded from instrumen-

tation, lowering the runtime intrusion to about 1% and

keeping the trace size manageable.

From a user’s perspective, the simplest form of synchro-

nization with the MPI one-sided interface is using fences.

Thus we developed our initial version of BT-RMA using

fence synchronization for both data exchanges. The analy-

sis results (Table 2) show that more than 44% of the overall

runtime was spent in active target synchronization calls,

that is MPI_Win_fence. Approximately 6% of the total

time was found to be waiting time attributable to the Wait

at Fence pattern, i.e. a major fraction of synchronization

time was actually spent synchronizing the individual pro-

cesses and not in any particular inefficiency pattern.

Further investigation of the initial measurement re-

vealed that most of the synchronization time was spent in

synchronizing the solver exchanges. Additionally, the per-

formance metric Pairwise synchronizations for RMA

showed that 98.1% of all pairwise synchronizations

counted are in the same synchronization calls that exhibit

the excessive use of time. Even more, 99.8% of those pair-

wise synchronizations were unneeded as no data is

exchanged between the processes involved. We therefore

subsequently modified the code to use GATS synchroniza-

tion in the solver, while still using fences in the face

exchange. This version showed a dramatic reduction of the

overall execution time to only 57% of the runtime of the

fence-only variant. Although significantly faster, active

target synchronization still accounts for about 4.2% of the

application runtime, with Wait at Fence requiring 1.3% and

Early Wait about 0.9%. In addition, this variant uses

2.5 times more time for remote access operations compared

to the fence-only version, now spending 1.6% of the total

time in the Early Transfer wait state. This indicates that

in the version using fence synchronization the MPI imple-

mentation is progressing more of the overall RMA commu-

nication during the fence calls themselves.

As a next step, we completely eliminated the calls to

MPI_Win_fence by adapting the face exchange to also use

GATS synchronization with individual windows for each

of the six neighbors. Although the Wait at Fence wait state

disappeared, the waiting time almost entirely migrated to

Table 1. Event statistics and analysis times for the red-black SOR

Poisson solver measured on the IBM Blue Gene/P system Jugene.
The last column shows the analysis time as a percentage of the
application runtime.

# cores # events
execution
time [s]

analysis
time [s]

analysis
time [%]

128 12.682,656 40.7 2.37 5.82
256 26,133,376 42.7 2.41 5.64
512 53,034,816 83.9 2.48 2.96
1024 107,605,760 86.9 2.61 3.30
2048 216,747,648 204.0 2.91 1.43
4096 436,567,552 230.0 3.38 1.47
8192 876,207,360 375.0 4.47 1.19
16,384 1,758,559,232 397.0 8.61 2.17
32,768 3,523,262,976 793.0 14.73 1.86
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the Late Complete (mostly in the face exchange) and Early

Transfer patterns (predominantly in the solver), thus only

providing an additional speedup of approximately one

percent.

Based on these analysis results, we finally rearranged

the GATS synchronization calls slightly, starting the expo-

sure epochs as early as possible and shortening the access

epochs by moving the start/complete calls close to the

RMA transfers, decreasing the overall runtime again. BT-

RMA is now almost 45% faster than the first fence-based

version.

In addition to our initial evaluation of the BT-RMA code

on the Power6 575 cluster Jump, we also investigated its

behavior at the slightly larger scale of 1024 cores on the

Blue Gene/P system Jugene at the Jülich Supercomputing

Centre. Unfortunately, we encountered an issue with

general active target synchronization, which is currently

under investigation by IBM. The skew in processes moving

from one to the other dimension in the solver steps left the

runtime system exiting unexpectedly. As a workaround, we

inserted a barrier call after each solver step in the x, y, and z

dimension when changing the synchronization mechanism

to GATS, knowing that this might impair the overall

performance of the solver. When using fence synchroniza-

tion in the solver step (fence only) the inserted barrier

calls hardly have any effect on the application behavior,

as the fence calls implicitly synchronize the processes.

As can be seen in Table 3, the skew in processes

between the dimensions while using GATS in the solver

part is now consumed by the Wait at Barrier pattern, as

expected. However, we still observed a dramatic decrease

in time spent in active target synchronization. This insight
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Figure 5. Scaling behavior of the sor solver from 128 to 32,768 processes on the IBM Blue Gene/P system Jugene. The analysis time
(dashed line with squares) stays within one order of magnitude lower than the measured application (solid line with circles).

Table 2. Performance metrics for different variants of BT-RMA running on 256 cores of the IBM Power6 575 system Jump. The first
number in each column shows time in CPU seconds or a count, respectively. The second number shows the percentage of the total
time or total count. All values are inclusive – they include the time for sub-patterns (indicated through indentation).

Metric fence only GATS /fence GATS only GATS only (opt)

Total time 109,361.7 100.0 61,888.9 100.0 61,248.7 100.0 60,504.0 100.0
MPI time 51,252.5 46.9 7,156.5 11.6 6,882.5 11.3 6,284.3 10.4

RMA sync. 48,703.8 44.5 2,585.9 4.2 2,177.9 3.6 3,476.0 5.8
Wait at Fence 6,080.0 5.7 805.9 1.3 0.0 0.0 0.0 0.0
Early Wait 0.0 0.0 568.5 0.9 950.1 1.6 1,923.8 3.2

Late Complete 0.0 0.0 1.2 0.0 289.6 0.5 2.0 0.0
Late Post 0.0 0.0 2.9 0.0 4.4 0.0 0.9 0.0

RMA comm. 1,324.9 1.2 3,246.6 5.3 3,507.4 5.7 1,603.2 2.7
Early Transfer 0.0 0.0 980.5 1.6 2,299.6 3.8 848.6 1.4

P.w. sync. for RMA 5.98789e9 100.0 7.76264e7 100.0 1.23402e7 100.0 1.23402e7 100.0
Unneeded 5.97555e9 99.8 6.52861e7 84.1 0 0.0 0 0.0
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adds to the overall hypothesis that the synchronization

itself is not only costly in terms of waiting time, as these

costs are attributed to the Wait at Barrier pattern. It also

involves, at least in the measurement under consideration,

a significant amount of CPU time to execute the synchroni-

zation mechanism itself. It can be seen that while the

amount of needed pair-wise synchronizations increases

only by the expected factor of four going from 256 to

1024 processes, the number of unneeded pair-wise syn-

chronizations has increased much more dramatically.

Another interesting aspect of our performance investiga-

tion on a second platform is that one can see whether one or

the other performance property shows up in the overall

application behavior also depends on the MPI implementa-

tion. For example, the Late Post pattern is non-existent in

our measurements of BT-RMA on the Blue Gene/P, which

indicates different progress strategies compared to the MPI

implementation on the Power6 575 cluster.

6 Conclusion

MPI-2 remote memory access is a portable interface for

one-sided communication on current large-scale HPC sys-

tems. To better support developers in using this interface,

we have presented a scalable method for identifying wait

states in event traces of RMA applications. A particular

challenge to overcome was the availability of the commu-

nication parameters on only one side of an interaction

between two processes, requiring one-sided transfers of

analysis data during the parallel replay. We have shown the

scalability of our method using one application kernel with

up to 32,768 cores, and incrementally optimized a second

and more complex code guided by results of our analysis.

Future research will incorporate additional information

into the pattern search, such as the assertions given to vari-

ous MPI calls by the application. In addition, we plan to

investigate further inefficiency patterns for MPI-2 RMA

such as passive target lock competition. Moreover, we will

also consider leveraging our method for the scalable

automatic analysis of applications written in PGAS lan-

guages such as UPC.
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Marc-André Hermanns began working on tools for perfor-

mance analysis of parallel applications with his diploma

thesis at the University of Applied Sciences, Aachen

(Germany) on the measurement and modeling of MPI-2

one-sided communication. He joined the Jülich Supercom-
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performance tools group in Jülich again, with his Master’s

thesis at the University of Hagen (Germany) on a parallel

performance simulator for highly scalable applications.

Since 2008 he has been part of the MPI-Forum working

group for tools interfaces. In 2010, he joined the Laboratory

for Parallel Programming of the German Research School

for Simulation Sciences in Aachen. Building on his experi-

ences with MPI-2 one-sided communication he is currently

pursuing his PhD studies on the modeling and analysis of

partitioned global address space languages.

After earning his PhD degree in Computer Science from the

University of Koblenz-Landau (Germany) in 2005, Markus
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