000019095 001__ 19095
000019095 005__ 20240709081843.0
000019095 0247_ $$2DOI$$a10.1016/j.atmosenv.2011.11.021
000019095 0247_ $$2WOS$$aWOS:000301157700017
000019095 0247_ $$2altmetric$$aaltmetric:2433046
000019095 037__ $$aPreJuSER-19095
000019095 041__ $$aeng
000019095 082__ $$a550
000019095 084__ $$2WoS$$aEnvironmental Sciences
000019095 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000019095 1001_ $$0P:(DE-HGF)0$$aRasmussen, D.J.$$b0
000019095 245__ $$aSurface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models
000019095 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000019095 300__ $$a142 - 53
000019095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019095 3367_ $$2DataCite$$aOutput Types/Journal article
000019095 3367_ $$00$$2EndNote$$aJournal Article
000019095 3367_ $$2BibTeX$$aARTICLE
000019095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019095 3367_ $$2DRIVER$$aarticle
000019095 440_0 $$0697$$aAtmospheric Environment$$v47$$x1352-2310
000019095 500__ $$3POF3_Assignment on 2016-02-29
000019095 500__ $$aRecord converted from VDB: 12.11.2012
000019095 520__ $$aWe use long-term, coincident O-3 and temperature measurements at the regionally representative US Environmental Protection Agency Clean Air Status and Trends Network (CASTNet) over the eastern US from 1988 through 2009 to characterize the surface O-3 response to year-to-year fluctuations in weather, for the purpose of evaluating global chemistry-climate models. We first produce a monthly climatology for each site over all available years, defined as the slope of the best-fit line (m(O3-T)) between monthly average values of maximum daily 8-hour average (MDA8) O-3 and monthly average values of daily maximum surface temperature (T-max). Applying two distinct statistical approaches to aggregate the site-specific measurements to the regional scale, we find that summer time m(O3-T) is 3-6 ppb K-1 (r = 0.5-0.8) over the Northeast, 3-4 ppb K-1 (r = 0.5-0.9) over the Great Lakes, and 3-6 ppb K-1 (r = 0.2-0.8) over the Mid-Atlantic. The Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 3 (AM3) global chemistry-climate model generally captures the seasonal variations in correlation coefficients and m(O3-T) despite biases in both monthly mean summertime MDA8 O-3 (up to +10 to +30 ppb) and daily T-max (up to +5 K) over the eastern US. During summer, GFDL AM3 reproduces m(O3-T) over the Northeast (m(O3-T) = 2-6 ppb K-1; r = 0.6-0.9), but underestimates m(O3-T) by 4 ppb K-1 over the Mid-Atlantic, in part due to excessively warm temperatures above which O-3 production saturates in the model. Combining T-max biases in GFDL AM3 with an observation-based m(O3-T) estimate of 3 ppb K-1 implies that temperature biases could explain up to 5-15 ppb of the MDA8 O-3 bias in August and September though correcting for excessively cool temperatures would worsen the O-3 bias in June. We underscore the need for long-term, coincident measurements of air pollution and meteorological variables to develop process-level constraints for evaluating chemistry-climate models used to project air quality responses to climate change. Published by Elsevier Ltd.
000019095 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000019095 588__ $$aDataset connected to Web of Science
000019095 650_7 $$2WoSType$$aJ
000019095 65320 $$2Author$$aOzone
000019095 65320 $$2Author$$aTemperature
000019095 65320 $$2Author$$aClimate
000019095 65320 $$2Author$$aGlobal climate models
000019095 65320 $$2Author$$aModel evaluation
000019095 7001_ $$0P:(DE-HGF)0$$aFiore, A.M.$$b1
000019095 7001_ $$0P:(DE-HGF)0$$aNaik, V.$$b2
000019095 7001_ $$0P:(DE-HGF)0$$aHorowitz, L.W.$$b3
000019095 7001_ $$0P:(DE-HGF)0$$aMcGinnis, S.J.$$b4
000019095 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M.G.$$b5$$uFZJ
000019095 773__ $$0PERI:(DE-600)1499889-0$$a10.1016/j.atmosenv.2011.11.021$$gVol. 47, p. 142 - 53$$p142 - 53$$q47<142 - 53$$tAtmospheric environment$$v47$$x1352-2310$$y2012
000019095 8567_ $$uhttp://dx.doi.org/10.1016/j.atmosenv.2011.11.021
000019095 909CO $$ooai:juser.fz-juelich.de:19095$$pVDB:Earth_Environment$$pVDB
000019095 9131_ $$0G:(DE-Juel1)FUEK491$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000019095 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000019095 9141_ $$y2012
000019095 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019095 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019095 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019095 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000019095 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000019095 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000019095 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000019095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000019095 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x0
000019095 970__ $$aVDB:(DE-Juel1)133834
000019095 980__ $$aVDB
000019095 980__ $$aConvertedRecord
000019095 980__ $$ajournal
000019095 980__ $$aI:(DE-Juel1)IEK-8-20101013
000019095 980__ $$aUNRESTRICTED
000019095 981__ $$aI:(DE-Juel1)ICE-3-20101013