001     19176
005     20240313094912.0
024 7 _ |2 pmid
|a pmid:21404048
024 7 _ |2 pmc
|a pmc:PMC3232349
024 7 _ |2 DOI
|a 10.1007/s10827-011-0318-z
024 7 _ |2 WOS
|a WOS:000297820900003
037 _ _ |a PreJuSER-19176
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Mathematical & Computational Biology
084 _ _ |2 WoS
|a Neurosciences
100 1 _ |0 P:(DE-HGF)0
|a Hanuschkin, A.
|b 0
245 _ _ |a A reafferent and feed-forward model of song syntax generation in the Bengalese finch
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2011
300 _ _ |a 509 - 532
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 25129
|a Journal of Computational Neuroscience
|v 31
|y 3
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Partially funded by DIP F1.2, BMBF Grant 01GQ0420 to BCCN Freiburg, EU Grant 15879 (FACETS), EU Grant 269921 (BrainScaleS), Helmholtz Alliance on Systems Biology (Germany), Next-Generation Supercomputer Project of MEXT (Japan), Neurex, and the Junior Professor Program of Baden-Wurttemberg. The authors would like to thank Jun Nishikawa and Kentaro Katahira for stimulating and fruitful discussions. The computations were conducted on the high performance computer cluster of the CNPSN group at RIKEN BSI, Wako, Japan.
520 _ _ |a Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the auditory to the motor control area. Propagating synfire activity in the HVC codes for individual syllables of the song and priming signals from the auditory network reduce the competition between syllables to allow only those transitions that are permitted by the syntax. Both imprinting of song syntax within HVC and the interaction of the reafferent signal with an efference copy of the motor command are sufficient to explain the gradual loss of syntax in the absence of auditory feedback. The model also reproduces for the first time experimental findings on the influence of altered auditory feedback on the song syntax generation, and predicts song- and species-specific low frequency components in the LFP. This study illustrates how sequential compositionality following a defined syntax can be realized in networks of spiking neurons.
536 _ _ |0 G:(DE-Juel1)FUEK255
|2 G:(DE-HGF)
|a Neurowissenschaften (FUEK255)
|c FUEK255
|x 0
536 _ _ |0 G:(DE-HGF)POF2-333
|a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|c POF2-333
|f POF II
|x 1
536 _ _ |0 G:(EU-Grant)269921
|a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)
|c 269921
|f FP7-ICT-2009-6
|x 2
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Action Potentials: physiology
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Feedback, Physiological
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Finches: physiology
650 _ 2 |2 MeSH
|a High Vocal Center: physiology
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Models, Neurological
650 _ 2 |2 MeSH
|a Nerve Net: physiology
650 _ 2 |2 MeSH
|a Neural Networks (Computer)
650 _ 2 |2 MeSH
|a Semantics
650 _ 2 |2 MeSH
|a Vocalization, Animal: physiology
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a HVC
653 2 0 |2 Author
|a Reafferent
653 2 0 |2 Author
|a Feed-forward network
653 2 0 |2 Author
|a Efference copy
653 2 0 |2 Author
|a Syntax generation
653 2 0 |2 Author
|a Synfire chains
653 2 0 |2 Author
|a Bengalese finch
653 2 0 |2 Author
|a Spike synchrony
653 2 0 |2 Author
|a Motor control
653 2 0 |2 Author
|a Compositionality
700 1 _ |0 P:(DE-Juel1)144174
|a Diesmann, M.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)151166
|a Morrison, A.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)1473055-8
|a 10.1007/s10827-011-0318-z
|g Vol. 31, p. 509 - 532
|p 509 - 532
|q 31<509 - 532
|t Journal of computational neuroscience
|v 31
|x 0929-5313
|y 2011
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232349
909 C O |o oai:juser.fz-juelich.de:19176
|p VDB
|p ec_fundedresources
|p openaire
913 2 _ |0 G:(DE-HGF)POF3-579H
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Addenda
|x 0
913 1 _ |0 G:(DE-HGF)POF2-333
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|3 G:(DE-HGF)POF2
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 1
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer review
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|g INM
|k INM-6
|l Systembiologie und Neuroinformatik
|x 0
970 _ _ |a VDB:(DE-Juel1)133921
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21