000019211 001__ 19211
000019211 005__ 20240711085623.0
000019211 0247_ $$2DOI$$a10.1016/j.jeurceramsoc.2011.07.012
000019211 0247_ $$2WOS$$aWOS:000297451400002
000019211 037__ $$aPreJuSER-19211
000019211 041__ $$aeng
000019211 082__ $$a660
000019211 084__ $$2WoS$$aMaterials Science, Ceramics
000019211 1001_ $$0P:(DE-Juel1)VDB96317$$aVan Gestel, T.$$b0$$uFZJ
000019211 245__ $$aAssembly of 8YSZ nanoparticles into gas-tight 1-2 µm thick 8YSZ electrolyte layers using wet coating methods
000019211 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000019211 300__ $$a9 - 26
000019211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019211 3367_ $$2DataCite$$aOutput Types/Journal article
000019211 3367_ $$00$$2EndNote$$aJournal Article
000019211 3367_ $$2BibTeX$$aARTICLE
000019211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019211 3367_ $$2DRIVER$$aarticle
000019211 440_0 $$03891$$aJournal of the European Ceramic Society$$v32$$x0955-2219$$y1
000019211 500__ $$aRecord converted from VDB: 12.11.2012
000019211 520__ $$aThe application of a thin film electrolyte layer with a thickness in the micrometer range could greatly improve current solid oxide fuel cells (SOFCs) in terms of operating temperature and power output. Since the achievable minimal layer thickness with conventional powder coating methods is limited to similar to 5 mu m, a variety of thin film methods have been studied, but results on regular large-scale anode substrates are still lacking in the literature. In this paper, a wet coating process is presented for fabricating gas-tight 1-2 mu m thick 8YSZ electrolyte layers on a regular NiO/8YSZ substrate, with a rough surface, a high porosity and a large pore size. These layers were deposited in a similar way as conventional suspension based layers, but the essential difference includes the use of coating liquids (nano-dispersion, sol) with a considerably smaller particle size (85 nm, 60 nm, 35 nm, 6 nm). Successful deposition of such layers was accomplished by means of an innovative coating process, which involves the preparation of a hybrid polyvinyl alcohol/8YSZ membrane by dip-coating or spin-coating and subsequently burning out the polymer part at 500 degrees C. Results from He leak tests confirmed that the sintered layers posses a very low number of defects and with values in the range 10(-4)-10(-6) (hPa dm(3))/(s cm(2)) the gas-tightness of the thin film layers is satisfactory for fuel cell operation. Moreover, preliminary results have also indicated a potential reduction of the sintering temperature from 1400 degrees C to the range 1200-1300 degrees C, using the presented coating process. (C) 2011 Elsevier Ltd. All rights reserved.
000019211 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000019211 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000019211 588__ $$aDataset connected to Web of Science
000019211 650_7 $$2WoSType$$aJ
000019211 65320 $$2Author$$aFuel cells
000019211 65320 $$2Author$$aFilms
000019211 65320 $$2Author$$aZrO2
000019211 65320 $$2Author$$aSol-gel processes
000019211 65320 $$2Author$$aThin 8YSZ electrolyte
000019211 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b1$$uFZJ
000019211 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H.P.$$b2$$uFZJ
000019211 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b3$$uFZJ
000019211 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2011.07.012$$gVol. 32, p. 9 - 26$$p9 - 26$$q32<9 - 26$$tJournal of the European Ceramic Society$$v32$$x0955-2219$$y2012
000019211 8567_ $$uhttp://dx.doi.org/10.1016/j.jeurceramsoc.2011.07.012
000019211 8564_ $$uhttps://juser.fz-juelich.de/record/19211/files/FZJ-19211_PV.pdf$$yRestricted$$zPublished final document.
000019211 909CO $$ooai:juser.fz-juelich.de:19211$$pVDB
000019211 9131_ $$0G:(DE-Juel1)FUEK402$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000019211 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000019211 9141_ $$y2012
000019211 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019211 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019211 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019211 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000019211 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000019211 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000019211 970__ $$aVDB:(DE-Juel1)134001
000019211 980__ $$aVDB
000019211 980__ $$aConvertedRecord
000019211 980__ $$ajournal
000019211 980__ $$aI:(DE-Juel1)IEK-1-20101013
000019211 980__ $$aUNRESTRICTED
000019211 981__ $$aI:(DE-Juel1)IMD-2-20101013