001     19211
005     20240711085623.0
024 7 _ |2 DOI
|a 10.1016/j.jeurceramsoc.2011.07.012
024 7 _ |2 WOS
|a WOS:000297451400002
037 _ _ |a PreJuSER-19211
041 _ _ |a eng
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |a Van Gestel, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB96317
245 _ _ |a Assembly of 8YSZ nanoparticles into gas-tight 1-2 µm thick 8YSZ electrolyte layers using wet coating methods
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2012
300 _ _ |a 9 - 26
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of the European Ceramic Society
|x 0955-2219
|0 3891
|y 1
|v 32
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The application of a thin film electrolyte layer with a thickness in the micrometer range could greatly improve current solid oxide fuel cells (SOFCs) in terms of operating temperature and power output. Since the achievable minimal layer thickness with conventional powder coating methods is limited to similar to 5 mu m, a variety of thin film methods have been studied, but results on regular large-scale anode substrates are still lacking in the literature. In this paper, a wet coating process is presented for fabricating gas-tight 1-2 mu m thick 8YSZ electrolyte layers on a regular NiO/8YSZ substrate, with a rough surface, a high porosity and a large pore size. These layers were deposited in a similar way as conventional suspension based layers, but the essential difference includes the use of coating liquids (nano-dispersion, sol) with a considerably smaller particle size (85 nm, 60 nm, 35 nm, 6 nm). Successful deposition of such layers was accomplished by means of an innovative coating process, which involves the preparation of a hybrid polyvinyl alcohol/8YSZ membrane by dip-coating or spin-coating and subsequently burning out the polymer part at 500 degrees C. Results from He leak tests confirmed that the sintered layers posses a very low number of defects and with values in the range 10(-4)-10(-6) (hPa dm(3))/(s cm(2)) the gas-tightness of the thin film layers is satisfactory for fuel cell operation. Moreover, preliminary results have also indicated a potential reduction of the sintering temperature from 1400 degrees C to the range 1200-1300 degrees C, using the presented coating process. (C) 2011 Elsevier Ltd. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Fuel cells
653 2 0 |2 Author
|a Films
653 2 0 |2 Author
|a ZrO2
653 2 0 |2 Author
|a Sol-gel processes
653 2 0 |2 Author
|a Thin 8YSZ electrolyte
700 1 _ |a Sebold, D.
|b 1
|u FZJ
|0 P:(DE-Juel1)129662
700 1 _ |a Buchkremer, H.P.
|b 2
|u FZJ
|0 P:(DE-Juel1)129594
700 1 _ |a Stöver, D.
|b 3
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1016/j.jeurceramsoc.2011.07.012
|g Vol. 32, p. 9 - 26
|p 9 - 26
|q 32<9 - 26
|0 PERI:(DE-600)2013983-4
|t Journal of the European Ceramic Society
|v 32
|y 2012
|x 0955-2219
856 7 _ |u http://dx.doi.org/10.1016/j.jeurceramsoc.2011.07.012
856 4 _ |u https://juser.fz-juelich.de/record/19211/files/FZJ-19211_PV.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:19211
|p VDB
913 1 _ |b Energie
|k P12
|l Rationelle Energieumwandlung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)POF2-100
|v Rationelle Energieumwandlung
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|g IEK
|0 I:(DE-Juel1)IEK-1-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)134001
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21