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Theory of the inverse Faraday effect in view of ultrafast magnetization experiments

Daria Popova, Andreas Bringer, and Stefan Blügel
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We supplement the theory of the inverse Faraday effect, which was developed in the 1960s, to the conditions

used today in ultrafast magnetization experiments. We show that assumptions used to derive the effective

Hamiltonian and magnetization are not valid under these conditions. We extended the approach to be applicable

to describe magnetization dynamics at femtosecond time scales. We show that after the action of an ultrafast

laser pulse the system is brought with a certain probability to a state, the magnetic signature of which is different

from before the excitation.
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I. INTRODUCTION

Ultrafast optical control of the magnetic state of a medium

is presently a subject of intense research. It is of importance

for the development of alternative concepts for high-speed

magnetic recording and information processing. A series of

experiments has revealed direct optical control of magnetiza-

tion via the inverse Faraday effect (IFE),1,2 i.e.,the generation

of an effective magnetic field by light. In these experiments,

magnetization reversal on subpicosecond time scales induced

by high-intensity laser pulses was demonstrated. The results

motivated intense experimental3–13 and theoretical14–21 in-

vestigations in the field of ultrafast magnetization, but the

mechanisms of magnetization reversal on femtosecond time

scales and the origin of the IFE are still poorly understood.

The IFE was predicted theoretically by Pitaevskii22 in

1960 from a pure phenomenological ansatz on the basis of

a thermodynamic potential describing the internal energy of a

system. Van der Ziel et al.23 observed the effect in 1966 and

Pershan et al.24 provided a detailed explanation of the IFE

from the quantum-mechanical point of view. The equation

M(t) = −γ E∗(t) × E(t), connecting the magnetic field M(t)

to the generating electric field E(t) of the light pulse, was

derived,22,24 which has been used until today to describe

the IFE. According to it, the change of magnetization is

proportional to the intensity of the pulse and vanishes after

the action of the pulse. However, in all modern measurements

of the IFE, the magnetization remains altered and takes some

time to stabilize.

With the advent of ultrafast pump-probe experiments, the

experimental conditions today are quite different from the ones

realized in the past. The duration of the laser pulse used in the

experiment of van der Ziel et al.23 was 30 ns. In the experiments

carried out nowadays, the duration of the laser pulse is equal

to or even shorter than 100 fs. That is about six orders of

magnitude shorter than in the 1960s and the laser fluence

used today is much higher. In the experiment of Kimel et al.1

the fluence was about 1011 W/cm2, which is four orders of

magnitude higher than in Ref. 23. Another essential difference

lies in the observation of the magnetization dynamics. Ziel

et al.23 measured the magnetization during the time the pulse

was present and the variation of magnetization was zero after

the action of the pulse. Nowadays, the magnetization dynamics

after the action of the laser field is of interest and requires an

interpretation, which is opposite the essence of the studies in

1960s. Thus there should be different mechanisms that are

responsible for the stationary and ultrafast IFE.

The understanding of these ultrafast mechanisms is essen-

tial for the investigation of spin precessions, which arise after

the action of circularly polarized light pulse on a system. A

proper set of equations that would describe the full picture

of the magnetic vector oscillations has been sought in several

publications.8,9,18,19 The problem that the authors encounter is

the inclusion of the correct time dependence of the induced

magnetization M(t) in such equations. According to the stan-

dard expression M(t) = −γ E∗(t) × E(t), there is no magnetic

field after the action of the laser light, which apparently is not

the case since the spin precessions are observed for much

longer times than the pulse duration.4–10 In Refs. 8,17, and 19

the induced magnetic field was introduced as a δ function. It

is a convenient however not quite exact approximation when

it is applied to derive the spin oscillations since their period

is typically on the order or just one order of magnitude higher

than a pulse duration. Another useful approach to connect the

laser magnetic action to spin oscillations has been suggested

by Galkin and Ivanov,18 but also under the assumption that the

system is under “the action of a short magnetic field pulse of

high amplitude and width δt much smaller than the problem

characteristic time.” The primary motivation of our work is

to find the correct way to introduce the time dependence of

the induced magnetization. We derive our approach without

any approximations concerning the pulse length. We obtain

that the induced magnetization does not remain zero after the

action of an ultrashort laser pulse.

Reid et al.10 have experimentally shown that “magnetism

on the subpicosecond time scale cannot be adequately de-

scribed by the thermodynamic model of the inverse Faraday

effect.” They compared the initial amplitudes of the observed

oscillations, excited by the 50-fs-long light pulse, with static

measurements of the materials Verdet constant, which is

proportional to γ , over a range of temperatures and found that

the two have very different temperature dependences. They

also obtained that the frequency of the oscillations are 30

times higher than expected for magnetization precessing in

the external field. The second question that we try to answer

is where these disagreements with the classical theories22,24

come from.
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We want to update and extend the approach developed by

Pershan et al.,24 which is the commonly accepted theoretical

foundation of the IFE, to the experimental conditions today

characterized by the availability of ultrafast lasers. Although

the process that is studied by Pershan et al.and in the present

work is the same, the mechanism of the stationary and

ultrafast IFE is shown to be different. We explain why the

thermodynamic approach that works in the nanosecond region

is not valid for the description of the magnetization dynamics

on subpicosecond time scales.

II. EFFECTIVE HAMILTONIAN APPROACH

The stimulated Raman-like scattering process was sug-

gested to be responsible for the magnetization reversal by

light.7,24 In this process, the laser pulse excites the transition

of an electron from the initial state to a virtual intermediate

one and then to the final state. Through the intermediate state,

the spins or magnetic moments of the system are influenced

and at the end the system is in a different magnetic state.

This process is described by the time-dependent

Schrödinger equation. The wave function of the system due to

the action of the electric field E(t) is found by the solution of

i
∂�(t)

∂t
= [H0 + V (t)]�(t) (1)

using the Volterra iteration method, where V (t) is the pertur-

bation due to the action of a field and H0 is the unperturbed

Hamiltonian. It includes all electron interactions, particularly

for the effects on the spin of the electrons, such as spin-orbit

and Zeeman interactions. The solution is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · ·]

= e−iH0t

[

1 −
i

h̄

∫ t

−∞
V̄ (t ′)dt ′

−
1

h̄2

∫ t

−∞
V̄ (t ′)dt ′

∫ t ′

−∞
V̄ (t ′′)dt ′′ + · · ·

]

�0, (2)

with V̄ (t) = eiH0tV (t)e−iH0t .

The Raman-like process is of second order in the inverse

speed of light 1/c. The perturbation is of first order 1/c: V (t) =
−d · E = 1

c
d · Ȧ, where d is the dipole moment of the system

and A is the vector potential. Therefore, the third term of the

expansion in Eq. (2) is of interest here. Pershan et al.24 intro-

duced an effective Hamiltonian Heff of the system defined by

transition amplitudes between initial states i and final states f ,

〈f | −
i

h̄

∫ t

−∞
Heff(t

′)dt ′|i〉

= 〈f | −
1

h̄2

∫ t

−∞
V̄ (t ′)dt ′

∫ t ′

−∞
V̄ (t ′′)dt ′′|i〉, (3)

which leads to

〈f |Heff(t)|i〉 = −
i

h̄

∑

j

〈f |V̄ (t)|j 〉
∫ t

−∞
〈j |V̄ (t ′)|i〉dt ′, (4)

with j being the intermediate states. Taking the most general

form of the perturbation V (t) = v(t)eiωt + v∗(t)e−iωt and

assuming that the amplitude of the perturbation v(t) varies

on a characteristic time scale T that is much larger than

FIG. 1. (Color online) Pulse with amplitude that does not change

noticeably in time (left) and Gaussian-shaped pulse (right). Time T

characterizing the pulse duration is a factor 20 times shorter for the

right pulse as compared to the left pulse.

1/(ω ± ωij ), the approximation

∫ t

−∞
v(t ′)ei(ωij ±ω)t ′dt ′ ≈ v(t)

ei(ωij ±ω)t

i(ωij ± ω)
(5)

becomes valid except for resonant transitions ±ω ≈ ωij ,

where ωij = ǫj −ǫi

h̄
with ǫi (j ) the energy of the state i (j ).

Under these conditions one obtains
∫ t

−∞
eiωij t

′
V̄ (t ′)dt ′ = v(t)

ei(ωij +ω)t

i(ωij + ω)
+ v∗(t)

ei(ωij −ω)t

i(ωij − ω)
. (6)

Then the effective Hamiltonian is found as

〈f |Heff(t)|i〉 = −
i

h̄

∑

j

[

vij (t)v∗
jf (t)

ωij + ω
+

vjf (t)v∗
ij (t)

ωij − ω

]

eiωif t .

(7)

The terms vijvjf ei(±2ωt+ωij ) correspond to a second harmonic

process. They connect the initial state to final states, which

are energetically widely separated from the initial state and

need not be considered here.

The ultrafast magnetization experiments are carried out

with pulses several tens of fs long (T ∼ 1/|ωij − ω|). There-

fore, the change of the pulse amplitude in time cannot

be be neglected anymore. For example, if we choose the

perturbation to be a circularly polarized Gaussian-shaped pulse

v(t) = −d · Ee−t2/T 2

(where E is the amplitude of the electric

field) the approximation in Eq. (5) would be valid only under

the assumption that the laser field could be considered almost

stationary, i.e., if T → ∞, which was actually the condition

considered by Pershan et al.24 The differences between the

pulses are illustrated in Fig. 1. The left-hand plot exhibits

the shape of a pulse for which the approximation in Eq. (5)

holds. During the time considered, the amplitude of v(t) does

not change significantly and the time integral over the field is

determined by the periodic function e±iωt . In the right-hand

plot the constant T that characterizes the pulse width is 20

times shorter and the variation of v(t) is important. When

integrating over the pulse, the factor e−t2/T 2

cannot be omitted.

The exact solution of the integral in Eq. (6) for the Gaussian-

shaped laser pulse is given by
∫ t

−∞
eiωij t

′
V̄ (t ′)dt ′ = −d · E

T
√

π

2

×
{

e−[T (ωij +ω)]2/4

[

1 + erf

(

t

T
−

i

2
T (ωij + ω)

)]

+ e−[T (ωij −ω)]2/4

[

1 + erf

(

t

T
−

i

2
T (ωij − ω)

)] }

. (8)
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Thus the effective Hamiltonian [Eq. (4)] for this pulse is

〈f |Heff(t)|i〉

= −
i
√

π

h̄
E

2T
∑

j

dijdjf e−t2/T 2

eiωjf t cos ωt

×
[

e−[T (ωij +ω)]2/4erfc

(

i

2
T

(

ωij + ω
)

−
t

T

)

+ e−[T (ωij −ω)]2/4erfc

(

i

2
T

(

ωij − ω
)

−
t

T

)]

. (9)

For large complex arguments z = |z| eiθ , |z| → ∞, and the

polar angle |θ | < 3π/4, the function erfc(z) approaches

asymptotically e−z2

√
πz

.25 Substituting this asymptote into Eq. (9),

one obtains exactly Eq. (7). The range of validity of Eq. (7)

may be determined precisely. From the condition |θ | < 3π/4

it follows that T |ωij ± ω| > 2t/T and the condition T |ωij ±
ω| ≫ 1 is necessary for |z| → ∞. Thus Eq. (7) is certainly

applicable to the experiments of Ziel et al.23 with pulse

durations on the order of nanoseconds; however, it is not valid

for pulses several tens of fs long and times larger than the pulse

duration.

In order to obtain the effective Hamiltonian for a system, the

transition amplitudes between the initial, intermediate (which

would mix orbital momentum and spin), and final states with

different magnetic quantum numbers from the initial ones

should be calculated and summed. Thus the simplest possible

example to demonstrate the discrepancies between the two

different approaches in describing the laser excitation to obtain

the effective Hamiltonian is a three-level system as depicted in

Fig. 2. However, the results of such a comparison are general

because the temporal behavior of the functions presented later

would be similar in many-level systems. We considered the

excitation of a Gaussian-shaped laser pulse that is 100 fs

long (T = 10−13 s) and calculated the time evolutions of the

amplitudes of the effective Hamiltonians in Eqs. (7) and (9).

The results are plotted in Figs. 3(a) and 3(b), respectively,

in units of energy ξ = E2dijdjf T/h̄. We can estimate the

amplitude by making the following reasonable assumptions: If

the dipole matrix elements are of the order of 1 a.u. (≈53 pm)

and the electric-field amplitude is about 107 V/m, which

is a typical value for laser fluences of 1011 W/cm2, then

ξ ≈ 10−4 eV.

FIG. 2. (Color online) The three-level system investigated. The

laser pulse causes transitions from the initial state |i〉 to the

intermediate |j〉 and then to the final one |f 〉, with a magnetic state

different from the one of the initial state. The spin is influenced by

the spin-orbit coupling of |j〉.

FIG. 3. (Color online) Time evolution of the amplitude of the

effective Hamiltonian (a) in Eq. (7) at different laser frequencies and

(b) in Eq. (9) at the laser frequency ω = 9.7 eV.

Figure 3(a) shows that the amplitudes of the function in

Eq. (7) reproduce the typical behavior of transition amplitudes

when the excitation frequency is off resonance. The maximum

increases when the excitation frequency is closer to resonance.

At resonance the function in Eq. (7) simply diverges. It

is indicated in Fig. 3(a) by a curve taken with a small

detuning off resonance: ω − ωij = 10−6 eV. This divergence is

a manifestation of the importance of the assumption of Pershan

et al.24 that the excitation frequency must be significantly far

from any resonances |ω ± ωij | ≫ 1/T .

In Fig. 3(b) we depict the action of the effective Hamiltonian

in Eq. (9) for only one excitation frequency, namely, ω =
9.7 eV, because plots of close-by frequencies overlap in a

way that cannot be graphically resolved. The functions at the

frequencies ω = 9.85 and 10 eV are very similar: The height

of the maximum is almost the same; only the positions of

the local maxima are different. The amplitudes of Eq. (9) are

oscillating functions, which is consistent with the presence of

the term cos ωt .

From the plots one could see that at the frequency ω =
9.7 eV the amplitude of the function in Eq. (7) is one order of

magnitude smaller than the one in Eq. (9). Furthermore, the

former function is smooth, while the latter is oscillating. The

completely different behavior of both functions arises from

the fact that the validity condition of the approximation in

Eq. (5) is not satisfied since T (ωij − ω) ≈ 10. Therefore, the

maximum of the function in Eq. (9) is still proportional to

T , while the one in Eq. (7) is proportional to 2ω

|ω2
ij −ω2| , thus

explaining the factor of 10 difference between the amplitudes.

Though both functions differ significantly under the chosen

conditions, they approach each other with an increase of T .

Figure 4 shows both functions for ω = 9.7 eV, when T is one

order of magnitude larger. The oscillations of the function in

Eq. (9) still remain because the terms vijvjf ei(±2ωt+ωij ) were

not eliminated in Eq. (9).
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FIG. 4. (Color online) Time evolutions of the amplitude of both

effective Hamiltonians in Eqs. (7) [dashed (red) line] and (9) [solid

(blue) line] at T = 10−12 s and at the laser frequency ω = 9.7 eV.

The unit ξ is rescaled according to the increased T .

In order to derive the magnetization dynamics from the

effective Hamiltonian, Pershan et al.24 defined a potential

function as

F (t) =
∑

if

H
if

eff(t)ρif (t), (10)

where ρif is the density matrix for the atomic system.

They obtained the time dependence of the magnetization

as derivative of the potential function with respect to an

external magnetic field H , M(t) = − ∂F (t)/∂H |H=0, under

the assumption that vij (t)v∗
jf (t) changes slowly compared to

thermal relaxation times of the system.

If we apply this relation to our system, we would be able

to describe the magnetization dynamics only during the pulse,

i.e., when H
if

eff(t) is nonzero. According to this relation, the

functional and, consequently, the magnetization would be zero

after the action of the pulse. This is certainly not the case in the

experiments of Kimel et al.,1 where the magnetization dynam-

ics is observed after the pulse. This prescription on the basis

of thermodynamical potentials fails due to the steady-state

conditions [Eq. (2.11) in Ref. 26] and the thermodynamical

equilibrium underlying the derivation, which simply cannot be

considered in the ultrafast magnetization experiments, where

intensities are very high and the time scales are shorter than

any relaxation time of the system.

III. SECOND ORDER WAVE-FUNCTION

In order to study the time dependence of the magnetization

after the action of a fast laser pulse we suggest that the

second-order wave function �2 introduced in Eq. (2) should

be calculated, which gives the probability of the transitions,

leading to the change of the magnetic state of the system. It is

related to the effective Hamiltonian by the integral

�2(t) = −
i

h̄

∫ t

−∞
Heff(t

′)dt ′. (11)

The second-order wave function �2 was calculated for the

three-level system using the Hamiltonians in Eqs. (7) and (9),

respectively. The solution resulting from the Hamiltonian in

Eq. (7) is denoted by �̄2. The time evolutions of |�̄2| and

|�2| are plotted in Figs. 5(a) and 5(b), respectively, in the

dimensionless units w = ξT /h̄, with T = 100 fs.

For the calculation of �̄2 under the action of the Hamilto-

nian Heff(t) in Eq. (7) we applied the approximation in Eq. (5),

FIG. 5. (Color online) Time evolution of the second-order wave

function (a) |�̄2(t)| applying the approximation in Eq. (5) and (b)

|�2(t)| according to the effective Hamiltonian in Eq. (9). The inset

shows |�2(t)| [solid (red) line] and |�̄2(t)| [dashed (brown) line] at

ω = 9.7 eV.

which is consistent with the derivation of the Hamiltonian in

Eq. (7). We find that the evolution of �̄2 is proportional to

the effective Hamiltonian [Fig. 5(a)] and thus it has the same

functional dependence as the potential function in Eq. (10).

This confirms that the functional F can be used to calculate

the magnetization under the condition that Eq. (5) is applicable.

Compatible with Eq. (10), the magnetization goes to zero after

the excitation is completed according to the time evolution

of �̄2.

Except at resonance, the functions |�̄2| and |�2| exhibit

the same behavior during the first half of the pulse [see the

inset of Fig. 5(b)], but the key difference is that the function

|�2| is nonzero after the action of the pulse. This means that

the system remains in an altered state, i.e., with an altered

magnetization, after the laser pulse has faded away. Therefore,

�2(t) is able to describe the magnetization dynamics after the

excitation in the ultrafast magnetization experiments.

For example, the simplest mechanism of magnetization

changes via the Raman-like scattering process is depicted in

Fig. 2. Due to some internal or external magnetic field, all

spins in the system are aligned in one direction. The light is

circularly polarized and propagating in a different direction,

which is chosen as the axis of quantization. Therefore, the

ground state is a mixture of spin-up and -down states. The

role of the spin-orbit coupling is to split the excited states

with different combinations of |ML + 1, ↑〉 and |ML + 1, ↓〉
(where ML is the projection of the orbital moment of the initial

state). Thus selection rules and dipole matrix elements for the

transition with circularly polarized light to the excited state

are different for each component.24 Thereby, the spin of the

electron is influenced by the virtual state. After the emission of
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a photon, the electron arrives at a state with spin components

that are different from the initial ones.

Calculating the second-order function �2(t), one would

obtain the probabilities for the new state to be spin up or spin

down. In order to calculate this function correctly in a solid

state, the wave functions, which describe all transitions over

excited levels j and final states f , which would effect the

spin, should be summarized �2(t) =
∑

jf �
jf

2 (t). Therefore,

the simplified picture presented here does not influence the

conclusions on the temporal behavior, which is the main

concern of this paper. However, the role of the excited states

should be accurately studied in a real material.

The induced magnetization Mα(t) can be derived from this

function with the help of the momentum operators ĵα (α stays

for x,y,z) as follows. If the wave function of an atom is � ′,
then its magnetization is Mα = −µBgJ 〈� ′|ĵα|� ′〉/|� ′|2. We

substitute � ′ = �0 + �2 for our system because we have

to take into account the total influence of the unchanged

ground state i and the state f , which becomes occupied due

to the action of light. Subtracting the initial magnetization, we

obtain

Mα = −µBgJ

(

〈�0 + �2|ĵα|�0 + �2〉
|�0 + �2|2

−
〈�0|ĵα|�0〉

|�0|2

)

≈ −µBgJ

(

〈�0|ĵα|�2〉 + 〈�2|ĵα|�0〉 + 〈�2|ĵα|�2〉
)

.

(12)

The first two terms in small parentheses are proportional to

w = E2dijdjf T 2/h̄2 and the last term in small parentheses is

proportional to w2; thus it is negligible and can be ignored.

The equation becomes

Mα(t) ≈ −µBgJ [〈�0|ĵα|�2(t)〉 + 〈�2(t)|ĵα|�0〉]. (13)

According to it, the induced magnetization Mα(t) is propor-

tional to w, which is proportional to the light fluence. The same

dependence has been seen in the experiments.1,5,6 Another

result is that the time dependence of the magnetization is

determined by the function �2(t) and has similar behavior, as

depicted in Fig. 5. It is completely different from the expression

−γ E∗(t) × E(t) in the ultrafast regime, but approaches it with

increasing T [see the discussion of Eq. (9)]. The function

�2(t) and, consequently, the induced magnetization depend

greatly on the ultrashort laser pulse properties (such as shape

or frequency). This statement is supported by the observation

in Ref. 8 that the initial phase and amplitude of the oscillation

of the polarization of the probe pulse depend on the pump

wavelength. This results in many opportunities for tuning spin

dynamics by adjusting the laser properties.

IV. CONCLUSIONS

In the case of ultrashort laser pulses (T ∼ 1/
ω), the effec-

tive Hamiltonian and �2 are no longer proportional and there is

nothing like the functional in Eq. (10) to obtain magnetization.

Under these circumstances, the effective Hamiltonian must be

integrated over time to obtain the wave function describing

the transitions that cause the change of the magnetic state.

Thus we conclude that the change of magnetization after

the action of an ultrashort laser pulse can be obtained when

the time-dependent Schrödinger equation is solved without

approximations. We suggest that the magnetic action of the

light should be considered as the magnetization of the sample

changes from its ground-state value to some nonequilibrium

one after the excitation. This description would be helpful to

derive the correct expression for the spin oscillations.

In summary, we extended the theory of Pershan et al.,24

developed to describe the inverse Faraday effect, to the regime

of ultrafast magnetization dynamics, which is the focus of

current research. We showed that the approximations used

at that time cannot be applied to ultrafast pump-probe-type

laser experiments. The exact solution of the time-dependent

Schrödinger equation up to the second order of 1/c ex-

plains why ultrashort laser pulses can cause a change of

magnetization. A laser pulse excites two transitions in the

system: from the initial to the intermediate state and from

the intermediate to the final state, which is in a different

magnetic state from the initial one, in which the system

remains with a certain probability. Magnetization due to the

action of the pulse is related to this probability, but not

to a thermodynamical functional, which is derived from an

effective Hamiltonian. The same considerations can be applied

to other magneto-optical effects, showing that a subpicosecond

magnetization dynamics should be treated differently from that

in a nanosecond region. The formalism outlined to describe

the action of ultrashort laser pulses is general and may also be

applicable to other optical experiments.
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