000019316 001__ 19316
000019316 005__ 20240711085638.0
000019316 0247_ $$2ISSN$$a1866-1793
000019316 0247_ $$2Handle$$a2128/4549
000019316 020__ $$a978-3-89336-765-8
000019316 037__ $$aPreJuSER-19316
000019316 041__ $$aEnglish
000019316 082__ $$a500
000019316 082__ $$a333.7
000019316 082__ $$a620
000019316 1001_ $$0P:(DE-Juel1)VDB75535$$aXing, Ye$$b0$$eCorresponding author$$uFZJ
000019316 245__ $$aDevelopment of Thin Film Oxygen Transport Membranes on Metallic Supports
000019316 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000019316 300__ $$aIV, 117 S.
000019316 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000019316 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000019316 3367_ $$02$$2EndNote$$aThesis
000019316 3367_ $$2DRIVER$$adoctoralThesis
000019316 3367_ $$2BibTeX$$aPHDTHESIS
000019316 3367_ $$2DataCite$$aOutput Types/Dissertation
000019316 3367_ $$2ORCID$$aDISSERTATION
000019316 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v130$$x1866-1793
000019316 502__ $$aRuhr-Universität Bochum, Diss., 2011$$bDr. (Univ.)$$cRuhr-Universität Bochum$$d2011
000019316 500__ $$3POF3_Assignment on 2016-02-29
000019316 500__ $$aRecord converted from JUWEL: 18.07.2013
000019316 500__ $$aRecord converted from VDB: 12.11.2012
000019316 520__ $$aAsymmetric membrane structure has an attractive potential in the application of O$_{2}$/N$_{2}$ gas separation membrane for the future membrane-based fossil fuel power plant using oxyfuel technology, which will reduce the carbon dioxide emission. The aim of this study is the development of a metal supported multi-layer membrane structure with a thin film top membrane layer and porous ceramic interlayers. Four perovskite materials were studied as candidate membrane materials. Material properties of these perovskite materials were investigated and compared. La$_{0.58}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-\delta}$ (LSCF58428) showed sufficient oxygen permeability, an acceptable thermal expansion coefficient and a moderate sintering temperature. Alternatively, Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ (BSCF5582) is considered obtaining very high oxygen permeability but a higher thermal expansion and a lower thermal stability than LSCF58428. Four different Ni-based alloys were studied as candidate substrate materials in the asymmetric membrane structure. The chromia-scale alloys (Hastelloy X, Inconel 600 and Haynes 214) caused Cr poisoning of the membrane layer material LSCF58428 during high-temperature co-firing in air. NiCoCrAlY with a high Al content (12.7 wt%) was found to be the most promising substrate material. It showed a good chemical compatibility with perovskite materials at high temperatures. In order to bridge the highly porous substrate and the thin top membrane layer interlayers were developed. Two interlayers were coated by screen printing on the porous NiCoCrAlY substrate which was sintered at 1225°C in flowing H2 atmosphere. Screen printing pastes were optimized by investigating various solvent and binder combinations and various ceramic powder contents. The first interlayer significantly improved the surface quality and the surface pore size has been reduced from 30-50$\mu$m on the substrate to few $\mu$m on the first interlayer, though it comprised some cracks. The second interlayer had a crack-free and porous structure. The top membrane layer was deposited by physical vapor deposition (magnetron sputtering) with a thickness of 3.8 $\mu$m improving the gastightness considerably but showing still reasonable air-leakage. Summarizing, the successful development of a metal-perovskite-composite could be shown, which acts as a basis for a further development of a gas-tight metal supported oxygen transport asymmetric membrane structure.
000019316 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000019316 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000019316 8564_ $$uhttps://juser.fz-juelich.de/record/19316/files/Energie%26Umwelt_130.pdf$$yOpenAccess
000019316 8564_ $$uhttps://juser.fz-juelich.de/record/19316/files/Energie%26Umwelt_130.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000019316 8564_ $$uhttps://juser.fz-juelich.de/record/19316/files/Energie%26Umwelt_130.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019316 8564_ $$uhttps://juser.fz-juelich.de/record/19316/files/Energie%26Umwelt_130.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000019316 909CO $$ooai:juser.fz-juelich.de:19316$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000019316 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019316 9141_ $$y2011
000019316 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000019316 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000019316 920__ $$lyes
000019316 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000019316 970__ $$aVDB:(DE-Juel1)134151
000019316 9801_ $$aFullTexts
000019316 980__ $$aVDB
000019316 980__ $$aConvertedRecord
000019316 980__ $$aphd
000019316 980__ $$aI:(DE-Juel1)IEK-1-20101013
000019316 980__ $$aUNRESTRICTED
000019316 980__ $$aJUWEL
000019316 980__ $$aFullTexts
000019316 981__ $$aI:(DE-Juel1)IMD-2-20101013