001     19328
005     20210129210724.0
024 7 _ |a pmid:22143164
|2 pmid
024 7 _ |a 10.1159/000330648
|2 DOI
024 7 _ |a WOS:000302135900002
|2 WOS
024 7 _ |a 2128/7388
|2 Handle
037 _ _ |a PreJuSER-19328
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Clinical Neurology
084 _ _ |2 WoS
|a Peripheral Vascular Disease
100 1 _ |a Dohmen, C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a The Severity of Ischemia Determines and Predicts Malignant Brain Edema in Patients with Large Middle Cerebral Artery Infarction
260 _ _ |a Basel
|b Karger
|c 2012
300 _ _ |a 1 - 7
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Cerebrovascular Disease
|0 22882
|y 1
|v 33
500 _ _ |a This study was supported by the Federal Ministry of Education and Research (BMBF), Competence Network Stroke.
520 _ _ |a In order to determine the impact of the severity of ischemia on malignant edema formation, we investigated various degrees of perfusional deficit by (11)C-flumazenil PET in patients with large middle cerebral artery (MCA) infarction.17 patients with large MCA stroke were included. Cerebral blood flow (CBF) was measured 15.9 ± 6.4 h after the ictus. Patients were divided into a malignant (n = 9) and a benign group (n = 8) as a function of their clinical courses and edema. Edema was measured as maximal midline shift on follow-up CTs. Total hypoperfusion volume was divided into different subvolumes according to the degree of CBF reduction.Subvolumes of severe ischemia relative to total ischemic area were significantly larger in the malignant group than in the benign group and were significantly correlated with edema formation. The highest correlation and best predictive values for edema formation with a sensitivity, specificity, and a positive and negative predictive value of 100% were found for subvolumes with severe ischemia. Correlation coefficients and prediction decreased for subvolumes with less severe perfusional deficit, pointing to the risk of misclassifying patients when relying on the volume of total perfusional deficit alone.Malignant MCA infarction seems to be determined more by the volume of severe perfusional deficit than that of total perfusional deficit. Assessment of severely ischemic areas allows prediction of malignant edema formation and might help to select candidates for hemicraniectomy.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89572 - (Dys-)function and Plasticity (POF2-89572)
|0 G:(DE-HGF)POF2-89572
|c POF2-89572
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Aged
650 _ 2 |2 MeSH
|a Brain Edema: etiology
650 _ 2 |2 MeSH
|a Brain Edema: physiopathology
650 _ 2 |2 MeSH
|a Brain Edema: radiography
650 _ 2 |2 MeSH
|a Brain Edema: surgery
650 _ 2 |2 MeSH
|a Cerebrovascular Circulation
650 _ 2 |2 MeSH
|a Chi-Square Distribution
650 _ 2 |2 MeSH
|a Decompressive Craniectomy
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Flumazenil: diagnostic use
650 _ 2 |2 MeSH
|a Germany
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Infarction, Middle Cerebral Artery: complications
650 _ 2 |2 MeSH
|a Infarction, Middle Cerebral Artery: physiopathology
650 _ 2 |2 MeSH
|a Infarction, Middle Cerebral Artery: radionuclide imaging
650 _ 2 |2 MeSH
|a Infarction, Middle Cerebral Artery: surgery
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Patient Selection
650 _ 2 |2 MeSH
|a Perfusion Imaging: methods
650 _ 2 |2 MeSH
|a Positron-Emission Tomography
650 _ 2 |2 MeSH
|a Predictive Value of Tests
650 _ 2 |2 MeSH
|a Prognosis
650 _ 2 |2 MeSH
|a Radiopharmaceuticals: diagnostic use
650 _ 2 |2 MeSH
|a Risk Assessment
650 _ 2 |2 MeSH
|a Risk Factors
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 2 |2 MeSH
|a Severity of Illness Index
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Tomography, X-Ray Computed
650 _ 7 |0 0
|2 NLM Chemicals
|a Radiopharmaceuticals
650 _ 7 |0 78755-81-4
|2 NLM Chemicals
|a Flumazenil
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Brain edema
653 2 0 |2 Author
|a Ischemic stroke
653 2 0 |2 Author
|a Malignant infarction
653 2 0 |2 Author
|a Emission tomography
700 1 _ |a Galldiks, N.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB73298
700 1 _ |a Bosche, B.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Kracht, L.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Graf, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB89964
773 _ _ |a 10.1159/000330648
|g Vol. 33, p. 1 - 7
|p 1 - 7
|q 33<1 - 7
|0 PERI:(DE-600)1482069-9
|t Cerebrovascular diseases
|v 33
|y 2012
|x 1015-9770
856 7 _ |u http://dx.doi.org/10.1159/000330648
856 4 _ |u https://juser.fz-juelich.de/record/19328/files/FZJ-19328.pdf
|y Published under German "Allianz" Licensing conditions on 2012-01-01. Available in OpenAccess from 2013-01-01
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/19328/files/FZJ-19328.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/19328/files/FZJ-19328.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/19328/files/FZJ-19328.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:19328
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89572
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a Allianz-OA
|0 StatID:(DE-HGF)0520
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
920 1 _ |k INM-3
|l Kognitive Neurowissenschaften
|g INM
|0 I:(DE-Juel1)INM-3-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)134163
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21