001     19338
005     20240712100848.0
024 7 _ |a 10.5194/amt-2-299-2009
|2 DOI
024 7 _ |a WOS:000278085900023
|2 WOS
024 7 _ |a 2128/8689
|2 Handle
037 _ _ |a PreJuSER-19338
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |0 P:(DE-Juel1)VDB12001
|a Preusse, P.
|b 0
|u FZJ
245 _ _ |a New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging
260 _ _ |a Katlenburg-Lindau
|b Copernicus
|c 2009
300 _ _ |a 299 - 311
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 20401
|a Atmospheric measurement techniques
|v 2
|x 1867-1381
|y 2
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Gravity wave (GW) remote sensing from space now has reached a stage of maturity that some first confinements for GW modeling can be deduced. This is in particular due to global distributions of absolute values of GW momentum flux from infrared limb sounders and due to 2-D maps of the horizontal wave field provided by nadir viewing instruments. The logical step forward is an infrared limb imager (ILI) which combines the good vertical resolution of limb sounding with horizontal mapping capabilities and provides 3-D images of the GW temperature structures. In this paper we investigate 1) how an ILI advances measurements of GW momentum flux, 2) which additional benefits are achieved by limb imaging of GWs, and 3) how an ILI compares to other GW momentum flux measurements, in-situ, ground-based, and from space. In particular, the large advance made by gaining regular 3-D sampling is demonstrated.
536 _ _ |0 G:(DE-Juel1)FUEK491
|2 G:(DE-HGF)
|a Atmosphäre und Klima
|c P23
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB65191
|a Schröder, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB13497
|a Ern, M.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Friedl-Vallon, F.
|b 4
700 1 _ |0 P:(DE-Juel1)129105
|a Ungermann, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Oelhaf, H.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Fischer, H.
|b 7
700 1 _ |0 P:(DE-Juel1)129145
|a Riese, M.
|b 8
|u FZJ
773 _ _ |0 PERI:(DE-600)2505596-3
|a 10.5194/amt-2-299-2009
|g Vol. 2, p. 299 - 311
|p 299 - 311
|q 2<299 - 311
|t Atmospheric measurement techniques
|v 2
|x 1867-1381
|y 2009
856 4 _ |u https://juser.fz-juelich.de/record/19338/files/amt-2-299-2009.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19338/files/amt-2-299-2009.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19338/files/amt-2-299-2009.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19338/files/amt-2-299-2009.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19338/files/amt-2-299-2009.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:19338
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK491
|b Erde und Umwelt
|k P23
|l Atmosphäre und Klima
|v Atmosphäre und Klima
|x 0
|z vormals P22
914 1 _ |a Nachtrag
|y 2009
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|g IEK
|k IEK-7
|l Stratosphäre
|x 0
970 _ _ |a VDB:(DE-Juel1)134173
980 1 _ |a FullTexts
980 _ _ |a FullTexts
980 _ _ |a ConvertedRecord
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21