000019343 001__ 19343 000019343 005__ 20240610120832.0 000019343 0247_ $$2pmid$$apmid:21930280 000019343 0247_ $$2DOI$$a10.1016/j.jcis.2011.08.044 000019343 0247_ $$2WOS$$aWOS:000296223500026 000019343 037__ $$aPreJuSER-19343 000019343 041__ $$aeng 000019343 082__ $$a540 000019343 084__ $$2WoS$$aChemistry, Physical 000019343 1001_ $$0P:(DE-HGF)0$$aTòth, A.$$b0 000019343 245__ $$aInteraction of phenol and dopamine with commercial MWCNTs 000019343 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2011 000019343 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000019343 3367_ $$2DataCite$$aOutput Types/Journal article 000019343 3367_ $$00$$2EndNote$$aJournal Article 000019343 3367_ $$2BibTeX$$aARTICLE 000019343 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000019343 3367_ $$2DRIVER$$aarticle 000019343 440_0 $$03193$$aJournal of Colloid and Interface Science$$v364$$x0021-9797$$y469 - 475 000019343 500__ $$3POF3_Assignment on 2016-02-29 000019343 500__ $$aThe support of the FP7 Marie Curie IRSES program COMPOSITUM-Hybrid Nanocomposites (PIRSES-GA-2008-230790) is gratefully acknowledged. This work is related to the scientific program "Development of quality-oriented and harmonized R + D + I strategy and functional model at BME" supported by the New Szechenyi Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002). We are grateful for access to the small angle X-ray camera at the French CRC beam line BM2 at the European Synchrotron Radiation Facility, Grenoble. We express our gratitude to G. Bosznai for his contribution to the gas adsorption measurements, to J. Fekete, P. Jenei, and L. Bezur for their help in UPLC and ICP analysis, respectively, and to M. Kallay for the molecular calculations. 000019343 520__ $$aWe report the adsorption of phenol and dopamine probe molecules, from aqueous solution with NaCl, on commercial multiwall carbon nanotubes (MWCNT) and on their carboxylated derivative. The nanotubes were fully characterized by high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), potentiometric titration, electrophoretic mobility, and nitrogen adsorption (77K) measurements. The experimental pollutant isotherms, evaluated using the Langmuir model, showed that only 8-12% and 21-32% of the BET surface area was available for phenol and dopamine, respectively, which is far below the performance of activated carbons. Influence of the pH was more pronounced for the oxidized MWCNT, particularly with dopamine. The strongest interaction and the highest adsorption capacity occurred at pH 3 with both model pollutants on both types of nanotubes. Although the surface area available for adsorption is far lower in MWCNTs than in activated carbons, it is nonetheless substantial. In particular, delayed release of toxic molecules that are either adsorbed on the surface or trapped in the inner bore of such systems could constitute an environmental hazard. The need for further adsorption studies with regard to their environmental aspects is therefore pressing, particularly for MWCNTs in their functionalized state. 000019343 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000019343 588__ $$aDataset connected to Web of Science, Pubmed 000019343 65320 $$2Author$$aMultiwall carbon nanotube 000019343 65320 $$2Author$$aAdsorption 000019343 65320 $$2Author$$apH 000019343 65320 $$2Author$$aAqueous phase 000019343 65320 $$2Author$$aSAXS 000019343 650_2 $$2MeSH$$aAdsorption 000019343 650_2 $$2MeSH$$aDopamine: chemistry 000019343 650_2 $$2MeSH$$aElectrophoretic Mobility Shift Assay 000019343 650_2 $$2MeSH$$aHydrogen-Ion Concentration 000019343 650_2 $$2MeSH$$aMicroscopy, Electron, Transmission 000019343 650_2 $$2MeSH$$aNanotubes, Carbon 000019343 650_2 $$2MeSH$$aPhenol: chemistry 000019343 650_2 $$2MeSH$$aScattering, Radiation 000019343 650_2 $$2MeSH$$aThermodynamics 000019343 650_7 $$00$$2NLM Chemicals$$aNanotubes, Carbon 000019343 650_7 $$0108-95-2$$2NLM Chemicals$$aPhenol 000019343 650_7 $$2WoSType$$aJ 000019343 7001_ $$0P:(DE-HGF)0$$aTörcsik, A.$$b1 000019343 7001_ $$0P:(DE-HGF)0$$aTombàcz, E.$$b2 000019343 7001_ $$0P:(DE-HGF)0$$aOlàh, E.$$b3 000019343 7001_ $$0P:(DE-Juel1)VDB5029$$aHeggen, M.$$b4$$uFZJ 000019343 7001_ $$0P:(DE-HGF)0$$aLi, C.L.$$b5 000019343 7001_ $$0P:(DE-HGF)0$$aKlummpp, E.$$b6 000019343 7001_ $$0P:(DE-HGF)0$$aGeissler, E.$$b7 000019343 7001_ $$0P:(DE-HGF)0$$aLàszlò, K.$$b8 000019343 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2011.08.044$$gVol. 364$$n2$$p469–475$$q364$$tJournal of colloid and interface science$$v364$$x0021-9797$$y2011 000019343 8567_ $$uhttp://dx.doi.org/10.1016/j.jcis.2011.08.044 000019343 909CO $$ooai:juser.fz-juelich.de:19343$$pVDB 000019343 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000019343 9141_ $$y2011 000019343 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000019343 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0 000019343 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$gPGI$$kPGI-5$$lMikrostrukturforschung$$x0 000019343 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x1 000019343 970__ $$aVDB:(DE-Juel1)134179 000019343 980__ $$aVDB 000019343 980__ $$aConvertedRecord 000019343 980__ $$ajournal 000019343 980__ $$aI:(DE-Juel1)PGI-5-20110106 000019343 980__ $$aUNRESTRICTED 000019343 981__ $$aI:(DE-Juel1)ER-C-1-20170209