001     19343
005     20240610120832.0
024 7 _ |2 pmid
|a pmid:21930280
024 7 _ |2 DOI
|a 10.1016/j.jcis.2011.08.044
024 7 _ |2 WOS
|a WOS:000296223500026
037 _ _ |a PreJuSER-19343
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |0 P:(DE-HGF)0
|a Tòth, A.
|b 0
245 _ _ |a Interaction of phenol and dopamine with commercial MWCNTs
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3193
|a Journal of Colloid and Interface Science
|v 364
|x 0021-9797
|y 469 - 475
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The support of the FP7 Marie Curie IRSES program COMPOSITUM-Hybrid Nanocomposites (PIRSES-GA-2008-230790) is gratefully acknowledged. This work is related to the scientific program "Development of quality-oriented and harmonized R + D + I strategy and functional model at BME" supported by the New Szechenyi Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002). We are grateful for access to the small angle X-ray camera at the French CRC beam line BM2 at the European Synchrotron Radiation Facility, Grenoble. We express our gratitude to G. Bosznai for his contribution to the gas adsorption measurements, to J. Fekete, P. Jenei, and L. Bezur for their help in UPLC and ICP analysis, respectively, and to M. Kallay for the molecular calculations.
520 _ _ |a We report the adsorption of phenol and dopamine probe molecules, from aqueous solution with NaCl, on commercial multiwall carbon nanotubes (MWCNT) and on their carboxylated derivative. The nanotubes were fully characterized by high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), potentiometric titration, electrophoretic mobility, and nitrogen adsorption (77K) measurements. The experimental pollutant isotherms, evaluated using the Langmuir model, showed that only 8-12% and 21-32% of the BET surface area was available for phenol and dopamine, respectively, which is far below the performance of activated carbons. Influence of the pH was more pronounced for the oxidized MWCNT, particularly with dopamine. The strongest interaction and the highest adsorption capacity occurred at pH 3 with both model pollutants on both types of nanotubes. Although the surface area available for adsorption is far lower in MWCNTs than in activated carbons, it is nonetheless substantial. In particular, delayed release of toxic molecules that are either adsorbed on the surface or trapped in the inner bore of such systems could constitute an environmental hazard. The need for further adsorption studies with regard to their environmental aspects is therefore pressing, particularly for MWCNTs in their functionalized state.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adsorption
650 _ 2 |2 MeSH
|a Dopamine: chemistry
650 _ 2 |2 MeSH
|a Electrophoretic Mobility Shift Assay
650 _ 2 |2 MeSH
|a Hydrogen-Ion Concentration
650 _ 2 |2 MeSH
|a Microscopy, Electron, Transmission
650 _ 2 |2 MeSH
|a Nanotubes, Carbon
650 _ 2 |2 MeSH
|a Phenol: chemistry
650 _ 2 |2 MeSH
|a Scattering, Radiation
650 _ 2 |2 MeSH
|a Thermodynamics
650 _ 7 |0 0
|2 NLM Chemicals
|a Nanotubes, Carbon
650 _ 7 |0 108-95-2
|2 NLM Chemicals
|a Phenol
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Multiwall carbon nanotube
653 2 0 |2 Author
|a Adsorption
653 2 0 |2 Author
|a pH
653 2 0 |2 Author
|a Aqueous phase
653 2 0 |2 Author
|a SAXS
700 1 _ |0 P:(DE-HGF)0
|a Törcsik, A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Tombàcz, E.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Olàh, E.
|b 3
700 1 _ |0 P:(DE-Juel1)VDB5029
|a Heggen, M.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Li, C.L.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Klummpp, E.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Geissler, E.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Làszlò, K.
|b 8
773 _ _ |0 PERI:(DE-600)1469021-4
|a 10.1016/j.jcis.2011.08.044
|g Vol. 364
|n 2
|p 469–475
|q 364
|t Journal of colloid and interface science
|v 364
|x 0021-9797
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.jcis.2011.08.044
909 C O |o oai:juser.fz-juelich.de:19343
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|g PGI
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|g IBG
|k IBG-3
|l Agrosphäre
|x 1
970 _ _ |a VDB:(DE-Juel1)134179
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21