000019392 001__ 19392
000019392 005__ 20210302101135.0
000019392 0247_ $$2Handle$$a2128/16525
000019392 0247_ $$2ISSN$$a1866-1807
000019392 020__ $$a978-3-89336-858-7
000019392 037__ $$aPreJuSER-19392
000019392 041__ $$aEnglish
000019392 1001_ $$0P:(DE-Juel1)130539$$aBetzinger, Markus$$b0$$eCorresponding author$$gmale$$uFZJ
000019392 245__ $$aOrbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method
000019392 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000019392 300__ $$aVI, 173 S.
000019392 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000019392 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000019392 3367_ $$02$$2EndNote$$aThesis
000019392 3367_ $$2DRIVER$$adoctoralThesis
000019392 3367_ $$2BibTeX$$aPHDTHESIS
000019392 3367_ $$2DataCite$$aOutput Types/Dissertation
000019392 3367_ $$2ORCID$$aDISSERTATION
000019392 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Schlüsseltechnologien / Key Technologies$$v59
000019392 502__ $$aRWTH Aachen, Diss., 2011$$bDr. (Univ.)$$cRWTH Aachen$$d2011
000019392 500__ $$3POF3_Assignment on 2016-02-29
000019392 500__ $$aRecord converted from VDB: 12.11.2012
000019392 520__ $$aIn this thesis, we extended the applicability of the full-potential linearized augmented-planewave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structuremethods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. In contrast to the commonly applied local-density approximation (LDA) and generalized gradient approximation (GGA) for the xc energy, orbital-dependent functionals depend directly on the Kohn-Sham (KS) orbitals and only indirectly on the density. Two different schemes that deal with orbital-dependent functionals, the KS and the generalized Kohn-Sham (gKS) formalism, have been realized. While the KS scheme requires a local multiplicative xc potential, the gKS scheme allows for a non-local potential in the oneparticle Schrödinger equations. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential – its calculation constitutes the most time consuming step in a practical calculation – by an auxiliary mixed product basis (MPB). In this way, thematrix elements of theHamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4 f electrons, the electronic andmagnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local,multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. A formulation in terms of a slightly modified MPB enables to solve the OEP integral [...]
000019392 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019392 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000019392 8564_ $$uhttps://juser.fz-juelich.de/record/19392/files/FZJ-19392.pdf$$yOpenAccess$$zPrepress version for printing
000019392 909CO $$ooai:juser.fz-juelich.de:19392$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000019392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019392 9141_ $$y2011
000019392 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019392 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019392 920__ $$lyes
000019392 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000019392 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000019392 970__ $$aVDB:(DE-Juel1)134242
000019392 980__ $$aVDB
000019392 980__ $$aConvertedRecord
000019392 980__ $$aphd
000019392 980__ $$aI:(DE-Juel1)PGI-1-20110106
000019392 980__ $$aI:(DE-Juel1)IAS-1-20090406
000019392 980__ $$aUNRESTRICTED
000019392 9801_ $$aFullTexts
000019392 981__ $$aI:(DE-Juel1)IAS-1-20090406