000019395 001__ 19395
000019395 005__ 20210305080732.0
000019395 0247_ $$2ISSN$$a1866-1807
000019395 0247_ $$2Handle$$a2128/18578
000019395 020__ $$a978-3-89336-906-5
000019395 037__ $$aPreJuSER-19395
000019395 041__ $$aEnglish
000019395 1001_ $$0P:(DE-Juel1)VDB103998$$aThieß, Alexander R.$$b0$$eCorresponding author$$gmale$$uFZJ
000019395 245__ $$aDevelopment and application of a massively parallel KKR Green  function method for large scale systems
000019395 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000019395 300__ $$aII, 173 S.
000019395 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000019395 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000019395 3367_ $$02$$2EndNote$$aThesis
000019395 3367_ $$2DRIVER$$adoctoralThesis
000019395 3367_ $$2BibTeX$$aPHDTHESIS
000019395 3367_ $$2DataCite$$aOutput Types/Dissertation
000019395 3367_ $$2ORCID$$aDISSERTATION
000019395 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / key technologies$$v71
000019395 502__ $$aRWTH Aachen, Diss., 2011$$bDr. (Univ.)$$cRWTH Aachen$$d2011
000019395 500__ $$3POF3_Assignment on 2016-02-29
000019395 500__ $$aRecord converted from VDB: 12.11.2012
000019395 520__ $$aThe impact of structural and functional materials on society is often overlooked but can in fact hardly be overestimated: In numerous examples, ranging from the improvement of steel to the invention of light emitting diodes, carbon fibers as well as cheaper and larger memories for data storage, novel materials are a key to successfully face global challenges on mobility, energy, communication and sustainability. Most strikingly visible is this influence for technologies based on electronic, optical, and magnetic materials, technologies that revo- lutionize computing and communication excelling mankind into the information age. With the miniaturization of devices, made possible by the invention of the transistor and the integrated circuit, enormous and still exponentially growing computing and communication capabilities are fundamentally changing how we interact, work and live. Material science and condensed matter physics are at the heart of the invention, development, design and improvement of novel materials and subsequently of novel physical phenomena and processes and are thus an excellent demonstration of the interdependence of science, technology and society. Advances in modern material design and technology are closely linked to advances in understanding on the basis of condensed matter physics, statistical physics and quantum mechanics of the many particle problem as well as the development of powerful methods. High-performance experimental tools combined with extraordinary progress in theory and computational power provide insight on the microscopic phenomena in materials and have paved new roads towards understanding as well as raising and answering new questions. On the theory side, density functional theory takes a central position in this process. The ab initio description of materials from the first principles of quantum mechanics holds fun- damental and highly valuable information on the interactions and interplay of electrons in solids and contributes such to the advancement of knowledge on the structural, mechanical, optical, thermal, electrical, magnetic, ferroic or transport properties in bulk solids, surfaces, thin films, heterostructures, quantum wells, clusters and molecules. The complicated task to compute material properties on the quantum mechanical level of myriad of atoms in solids became first accessible by exploiting the periodicity of crystalline solids and high symmetry of idealized systems. Density functional theory calculations exploiting the periodic boundary [...]
000019395 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019395 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000019395 8564_ $$uhttps://juser.fz-juelich.de/record/19395/files/Schluesseltech_71.pdf$$yOpenAccess
000019395 8564_ $$uhttps://juser.fz-juelich.de/record/19395/files/Schluesseltech_71.gif?subformat=icon$$xicon$$yOpenAccess
000019395 8564_ $$uhttps://juser.fz-juelich.de/record/19395/files/Schluesseltech_71.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019395 8564_ $$uhttps://juser.fz-juelich.de/record/19395/files/Schluesseltech_71.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000019395 8564_ $$uhttps://juser.fz-juelich.de/record/19395/files/Schluesseltech_71.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019395 909CO $$ooai:juser.fz-juelich.de:19395$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000019395 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019395 9141_ $$y2013
000019395 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019395 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019395 920__ $$lyes
000019395 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000019395 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000019395 970__ $$aVDB:(DE-Juel1)134245
000019395 980__ $$aVDB
000019395 980__ $$aConvertedRecord
000019395 980__ $$aphd
000019395 980__ $$aI:(DE-Juel1)PGI-1-20110106
000019395 980__ $$aI:(DE-Juel1)IAS-1-20090406
000019395 980__ $$aUNRESTRICTED
000019395 9801_ $$aFullTexts
000019395 981__ $$aI:(DE-Juel1)IAS-1-20090406