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Growth of a two-phase finger in eutectics systems
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We present a theoretical study of the growth of a two-phase finger in eutectic systems. This pattern was

observed experimentally by Akamatsu and Faivre [Phys. Rev. E 61, 3757 (2000)]. We study this two-phase finger

using a boundary-integral formulation and we complement our investigation by a phase-field validation of the

stability of the pattern. The deviations from the eutectic temperature and from the eutectic concentration provide

two independent control parameters, leading to very different patterns depending on their relative importance.

We propose scaling laws for the velocity and the different length scales of the pattern.
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One of the most common modes of growth of a solid

phase from a metastable liquid is the dendritic one where a

nearly parabolic front advances at a constant velocity. The

possibility of a steady-state growth of a parabolic front was

first demonstrated by Ivantsov [1] and was supplemented by

the determination of the anisotropy of surface tension as a

selection mechanism for the velocity (see, for example, [2,3]

and references therein). Recently, selection mechanisms such

as the presence of a triple junction [4,5] or of elastic effects [6]

were reported.

Another classical mode of solidification is the lamellar

growth in eutectic alloys. The pioneering work of Jackson

and Hunt [7] on this topic refers to directional solidification

and especially consists of finding the temperature of the

solidification front. In opposition to dendritic growth, no

unique solution exists for this process. A range of lamellae

spacing is stable and bifurcations toward a broad range of

oscillatory regimes [8–10] or tilted patterns [11,12] have been

evidenced. It is worthwhile to mention the recent observation

of a three-dimensional spiral dendrite in eutectics [13].

Despite a large amount of theoretical and experimental

studies on eutectics, the problem of dendritic patterns has, to

our knowledge, never been addressed on a theoretical level

in these systems. However a dendritelike structure called

“two-phase fingers” (see Fig. 7 in [14]) has been observed

by Akamatsu and Faivre for an off-eutectic concentration

and it is suggested that such a pattern could grow with a

constant velocity in directional experiments. This is what we

study here in the isothermal case, that is, a two-dimensional

(2D) solidifying dendrite with one solid phase surrounded

by the other one. The framework of the boundary-integral

technique is used and we supplement our results with a

phase-field calculation showing that the eutectic two-phase

finger is a stable mode of growth. We discuss our re-

sults giving plausible arguments for the scaling of physical

quantities.

Geometry and phase diagram. The 2D dendritelike eutectic

finger studied in this article consists of two different solid

phases growing at the expense of the metastable liquid.

The exterior part consists of a first solid, called ext, which

exhibits an Ivantsov parabolic front asymptotically far from

the tip. The interior part consists of a lamella of a second

solid, called int, the lamella being parallel to the direction of

velocity (see Fig. 1). We denote by 2a the width of this interior

lamella. In Fig. 2, we present the corresponding phase diagram.

The operating point (temperature T0 and concentration C∞),

indicated by the black circle, lies in the liquid-ext two-phase

region. CSext(CSint) is the concentration of the solid ext (int)

in equilibrium with the liquid L and CLext(CLint) is the

concentration of the liquid L in equilibrium with solid ext

(int).

Boundary-integral formulation. The data about the phase

diagram and the operating point enter the boundary-integral

formulation of the problem. It consists of writing down

one integro-differential equation for each solid-liquid in-

terface having additional constraints at the triple junction.

The equations for the solid-liquid interfaces satisfy the steady-

state bulk diffusion equation and incorporate appropriate

boundary conditions. The boundary-integral technique for the

study of eutectic systems has been widely developed and used,

and we refer to [15] for a detailed derivation of the equations.

Here, instead of the periodic boundary conditions used in

lamellar growth, our two-phase finger has to correspond to an

Ivantsov parabola far behind the tip. The radius of curvature

ρ of this parabola enters the definition of the Peclet number

P = Vρ/2D, where V is the steady-state velocity of the finger

and D is the impurity diffusion coefficient. The Peclet number

is related to the composition of the metastable liquid C∞
through the Ivantsov relation. We measure the lengths x and

y of our system of coordinates in units of a, the width of the

interior lamella, and define λ = a/ρ. Then the equation for

the solid-liquid interface yi(x) (i = int or i = ext) reads
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FIG. 1. Geometry of the eutectic two-phase finger growing with

steady-state velocity V . The solid phases are denoted by ext and int.

Here δi,int = 1 for i = int and δi,int = 0 for i = ext;

�L = (CLint − CLext)/(CSext − CLext) > 0

represents the usual driving force in eutectics;

t = −(CLint − CSint)/(CLext − CSext) > 0

is the ratio of the miscibility gaps;

κ[yi(x)] = −
d2yi

dx2
(x)

[

1 +
(

dyi

dx
(x)

)2]−3/2

is the curvature, which is assumed to be positive for the pattern

exhibited in Fig. 1;

�∞ = (CLext − C∞)/(CLext − CSext) > 0

represents how “deep” the system is in the two-phase region of

the exterior phase. We consider for simplicity that the capillary

length d0 is the same for both solid-liquid interfaces and that at

the triple junction x = 1, Young law reads dyint/dx = −1, and

dyext/dx = 1. Provided that yi(x) = yi(−x), the symmetrized

Green’s function g is defined as follows:

g(x,y; x ′,y ′) = exp[Pλ(y − y ′)][K0(Pλη+) + K0(Pλη−)],

with K0 the modified Bessel function of zeroth order and where

η± =
√

(x ∓ x ′)2 + [y − y ′]2 and the derivative g′ as

g′(x,y; x ′,y ′)

= exp[Pλ(y − y ′)][K0(Pλη+) + f +(x,y; x ′,y ′)K1(Pλη+)

+K0(Pλη−) + f −(x,y; x ′,y ′)K1(Pλη−)],

with K1 the modified Bessel function of first order, and

f ±(x,y; x ′,y ′) = [−(x ∓ x ′)dy/dx + y − y ′]/η±.

From Eq. (1), one identifies two important control param-

eters. First, �∞ is mainly determined by C∞ and is related

FIG. 2. Eutectic phase diagram. The solid phases are denoted by

ext and int and the liquid phase by L. The operating point, indicated

by the black circle, lies in the liquid-ext two-phase region.

to the Peclet number P through the Ivantsov relation, which

reads here

�∞ =
Pλ

π

∫ ∞

0

dx g(x, − λx2/2; x ′, − λx ′2/2)

=
√

πP exp(P ) erfc(
√

P ). (2)

Second, �L is uniquely defined by the temperature of the

phase transformation and is proportional to the difference of

concentration in the liquid at the two solid-liquid interfaces.

One should notice that for the lamellar solidification of eutectic

alloys, the lamellae spacing, which fixes the length scale on

which the concentration field evolves, is inversely proportional

to the square root of the velocity [16]. Since by conservation

of mass at the moving solid-liquid interfaces the velocity is

proportional to �L divided by such a distance, one finds that

the velocity of this lamellar growth is proportional to �2
L. Then,

an invariant quantity is the square of the lamellae spacing times

the velocity.

Results. We now present our results, that is, the solution of

the equations exhibited above. Solving the equations presented

above consists of finding the locus of the interfaces and finding

the additional two unknowns, which are ρ and a. The velocity

V is given by the relation P = Vρ/2D. The two unknowns

ρ and a are determined by the addition of two constraints

(one for each interface) at the triple junction given by Young’s

law. In this respect, let us make two brief comments. First,

for the steady-state growth of “multiplets” (patterns with

several interior lamellae which are also observed in [14]), the

two additional constraints provided by Young’s law at each

additional triple junction determine the two coordinates of the

triple junction. Second, a eutectoid dendrite was theoretically

predicted in [5], each side of this dendrite consisting of a

different phase, and only one length scale ρ was present

in the system. We believe that this solution was a result of

the assumed high symmetry (eutectoid composition with a

completely symmetric phase diagram), and that this solution

does not exist for a more generic system.

We take t = 1, and we vary �L and P . In Fig. 3, the

variation of the dimensionless velocity V d0/2D versus �L

is shown on a logarithmic plot. One clearly observes that,

for several orders of magnitude, V d0/2D is proportional to

FIG. 3. Dimensionless velocity V d0/2D as a function of �L for

different values of P .
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FIG. 4. Plot of d0/(a�L) versus �L/P .

�2
L (more precisely, V d0/2D ≃ 0.05 �2

L) whatever the value

of P . Since Vρ/2D = P , ρ/d0 is proportional to P/�2
L

(more precisely, ρ/d0 ≃ 20 P/�2
L). Concerning the second

length scale of the problem a, we present in Fig. 4 the

variation of d0/(a�L) versus �L/P for different values of P

(from 5 × 10−5 to 5 × 10−9). We observe that d0/(a�L) only

depends on �L/P . Furthermore, we can identify, for �L/P �

1.5, a plateau where d0/(a�L) ≃ 1. For larger ratios �L/P ,

d0/(a�L) decreases and seems to saturate at d0/(a�L) ≃ 0.15

for �L/P � 30. According to the results presented in Figs. 3

and 4, the ratio of the two length scales of the two-phase finger

is λ ≃ 0.05�L/(Pd0/a�L) and it only depends on �L/P

also. When d0/a is proportional to �L (for �L/P � 1.5 and

�L/P � 30), λ is proportional to �L/P . In Figs. 5(a), 5(b),

and 5(c), we exhibit the tip region of the two-phase finger

for λ = 28.9 when �L/P = 100, λ = 1.4 when �L/P = 8,

and λ = 0.022 when �L/P = 0.45, respectively. The patterns

are qualitatively quite different depending on λ, the ratio of a

and ρ, which only depends on �L/P . Finally, we present in

Fig. 5(d) the result of a phase-field simulation of the eutectic

two-phase finger growth using the model developed in [17].

The pattern is qualitatively close to the one presented in

Fig. 5(b). Here t = 3 and the driving forces �∞ = 0.667

(which corresponds to P ≃ 0.55) and �L = 1.33 are very

large. Hence, we do not expect a precise quantitative agreement

with the boundary-integral results presented above. However,

the ratio of the length scales λ ≃ 0.35 is in good qualitative

agreement with the boundary-integral results (λ ≃ 0.17) for a

ratio �L/P = 2.4. The dimensionless steady-state velocity

V d0/2D ≃ 0.026 is also in a good qualitative agreement

if we use �L = 1.33 in the formula V d0/2D = 0.05�2
L

(=0.089). This phase-field simulation has the advantage to

show that the two-phase finger growth that we studied using the

boundary-integral technique is a stable steady-state process.

FIG. 5. Tip of the two-phase finger for λ = 28.9 (a), λ = 1.4

(b), and λ = 0.022 (c) and phase-field simulation of the two-phase

finger (d).

However, we do not know whether all solutions found from

the boundary-integral equations are stable.

Discussion. Let us first discuss the scaling d0/a ∼ �L and

λ ∼ �L/P that is suggested by the results of the previous

section for �L/P � 1.5 and �L/P � 30. For this purpose

we assume the limit �L ≪ 1 and P ≪ 1. Taking the small

argument limit of the Bessel functions K0(z) ∼ − ln(z) and

K1(z) ∼ 1/z, Eq. (1) can be written as

−
1

2
�Lδi,int −

1

2
[1 − (t + 1)δi,int]

d0

a
κ[y ′

i(x
′)]

= +
Pλ

π

∫ 1

0

dx [ln P 2λ2η+
ivη

−
iv + t ln P 2λ2η+η−]

+
Pλ

π

∫ ∞

1

dx ln
η+

ivη
−
iv

η+η−

+
1

2π

∫ 1

0

dx

{

�L − t
d0

a
κ[yint(x)]

}(

f +

η+ +
f −

η−

)

+
1

2π

∫ ∞

1

dx
d0

a
κ[yext(x)]

(

f +

η+ +
f −

η−

)

, (3)

with η±
iv =

√

(x ∓ x ′)2 + (−λx2/2 + λx ′2/2)2, and using

Eq. (2). For d0/a ∼ �L and λ ∼ �L/P all the terms of Eq. (3)

are of order �L up to logarithmic corrections. Moreover, the

fact that d0/(a�L) is close to 1 for small ratios �L/P in Fig. 4

can be explained as follows. In the limit �L/P → 0, we have

λ → 0. For the interior interface, the curvature κ[yint(x)] → 1,

and the left-hand side of Eq. (1) or (3) vanishes with d0/a →
�L (here t = 1). At the triple junction, the curvature of the

exterior interface κ[yext(x = 1)] → 0, and the continuity of

the concentration field is provided by the Gibbs-Thomson

correction of the liquid concentration at the interior interface

only. We can thus summarize the latter arguments by scaling

laws up to logarithmic corrections:

a

d0

∼
1

�L

,
ρ

d0

∼
P

�2
L

∼
(

�∞

�L

)2

,
V d0

2D
∼ �2

L. (4)

These scaling relations hold for �L/P ≪ 1 and for �L/P ≫
1 according to our calculations. However, we do not know

which mechanism is responsible for the cross-over between

these two regimes (see Fig. 4). The parameter space for the

description of the two-phase finger growth is a plane (described

by �L and P ) and the situation is more complex than in the

case of a single control parameter. Indeed, different physical

processes may be involved in the selection of the patterns

shown in Fig. 5, where a/ρ varies by three orders of magnitude.

However, Figs. 3 and 4 demonstrate that fixing the ratio �L/P

leaves a one parameter problem with a fixed value of a/ρ. We

note that, while the scaling relations presented in Eq. (4) are

very different from classical dendritic growth, the combination

a2V/d0D is still independent of the control parameters. One

should notice that this type of invariant quantity is also typical

for eutectic lamellar growth.

Figure 3 clearly indicates that the velocity scales as �2
L,

which is the same scaling as for lamellar growth. Surprisingly,

the steady-state velocity is thus independent of the global

concentration of the alloy C∞. This can be understood by the

fact that this scaling law is obtained in the limit of small Peclet

number and through a Laplace approximation (replacing the
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Green function and its derivative by their small argument

approximation). Indeed, as in the descriptions of lamellar

growth, the concentration gradients which are on the scale of

the diffusion length are neglected. Here, the information of the

global concentration only enters the selection of the asymptotic

radius of curvature of the Ivantsov parabola ρ/d0 ∼ P/�2
L.

In the limit P ≪ 1 and �L ≪ 1, the scaling relations pre-

sented in Eq. (4) ensure that a/d0 ∼ 1/�L ≫ 1. Since ρ/d0 ∼
P/�2

L ∼ (�∞/�L)2, the condition ρ/d0 ≫ 1 is fulfilled when

�∞/�L = (CLext − C∞)/(CLext − CLint) ≫ 1. Hence, when

C∞ approaches CLint, that is, approaches the intersection of

the two solid-liquid two-phase regions, ρ/d0 becomes of order

unity and the existence of such a pattern is questionable.

Moreover, the classical lamellar growth is usually observed in

this region of the phase diagram. In the other limit �L/P ≪ 1,

the two-phase finger growth may compete with a single-phase

dendritic growth (for which the velocity scales as αP 2, where

α ≪ 1 is linked to the anisotropy coefficient of the surface

tension), as suggested in [14].

Note that we performed preliminary phase-field simulations

supporting the idea that the two-phase finger growth occurs

also in systems such as monotectics or eutectoids (in these

systems the diffusion takes place in more than one phase).

Conclusion. In this article, we have presented a scenario for

two-phase finger growth in isothermal solidification of eutectic

systems. The finger consists of an interior part of one solid

phase, and an exterior part of another solid phase. The interior

solid phase takes the shape of a lamella parallel to the direction

of the velocity, and the exterior part has parabolic Ivantsov

asymptotics. We study this dendritic solution in the framework

of a boundary-integral method and make a complementary

phase-field validation of the stability of the pattern. The

deviations from the eutectic temperature and from the eutectic

concentration provide two independent control parameters:

�∞, which is related to the Peclet number P through the

Ivantsov relation, and �L. From our results, the steady-state

velocity scales as �2
L. This is the scaling law for the velocity

of the classical lamellar growth. The radius of curvature of

the asymptotic Ivantsov parabola ρ varies as P/�2
L. On the

other hand, our results show that the ratio of ρ and the width

of the interior lamella of the two-phase finger a depends

on �L/P . Moreover, we propose a scaling relation for a

(∼1/�L) which holds in the two limits �L ≪ P and �L ≫ P .

The existence of the two-phase finger was suggested through

experimental observations in [14]. Unfortunately, no possible

test of our scaling predictions is available through comparison

with quantitative experiments. Therefore, we hope that our

work will stimulate experimental studies of the two-phase

finger described here.
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