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Brittle fracture in viscoelastic materials as a pattern-formation process
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A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby,

the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation

process. In this spirit, a full description of a propagating crack provides the determination of the entire time

dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected

length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined

through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order

phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions

with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or

viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial

effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the

arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and

inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary

problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique.

Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.
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I. INTRODUCTION

The dynamics of crack propagation is an important and

long-standing mystery in solid-state physics and materials

science [1,2], and in recent years the physics community has

experienced a rebirth of interest in the problem of dynamic

fracture. The fundamental basis of today’s understanding of the

phenomenon fracture traces back to Griffith [3], who realized

that the growth of cracks is determined by a competition of

a release of elastic energy and a simultaneous increase of the

surface energy due to the advancing crack. The uniform motion

of a crack is relatively well understood in the framework of

continuum theories [4–6]. Here, the conventional approach is

to treat the crack as a front or interface separating broken

and unbroken regions of the material; propagation is governed

by the balance of the elastic forces in the materials and

cohesive stresses near the crack tip [7–9]. Many characteristic

features of crack propagation are nowadays well established

by experimental studies [10–17]. As soon as the flux of

energy to the crack tip exceeds a critical value, the crack

becomes unstable and starts to branch while emitting sound

waves. These phenomena are consistent with the continuum

theory of sharp crack tips, but it fails to describe them,

because the details of crack growth, in particular, the chosen

crack path and velocity, depend on details of cohesion

on microscopic scales [18]. Nevertheless, empirical energy

balances and simple propagation laws that are frequently used
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in engineering applications, cannot account for the richness of

actual fracture phenomena. In particular, they cannot predict

dynamical instabilities of fast moving cracks. The fundamental

mechanisms of these instabilities have been extremely difficult

to elucidate because they appear to result from a nontrivial

coupling between dynamical phenomena inside the crack tip

region, known as a process zone, and (linear) elasticity, with no

clear separation of scale between atoms and the system size.

Large scale molecular dynamics (MD) simulations with

about 107 atoms made it possible to get deeper insights into

the growth behavior of cracks [19–22]. Although limited

to submicron samples and very short time scales, these

simulations were able to reproduce key features of crack

propagation like the initial acceleration and the onset of

instabilities. Nevertheless, a detailed understanding of the

complex physics of crack propagation, in particular, aspects of

the pattern formation process, still remain a major challenge

[23].

At this level, continuum descriptions, in particular, phase

field methods that avoid dynamical artifacts which are associ-

ated with the breaking of translational and rotational symmetry

[24,25], offer a useful and complementary perspective on crack

propagation as a pattern formation process. The past years

have seen intense activities in phase field modeling of crack

propagation (see [26] for a recent review) and of defects in

general [27].

Here we propose a continuum description of crack

propagation in brittle materials in the spirit of interfa-

cial pattern formation processes. Inspired by the discovery

of the Asaro-Tiller-Grinfeld (ATG) instability [28–30], we
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understand fracture as late and highly nonlinear stage of

this elastically driven interfacial instability. In its early stage,

a linear stability analysis of a solid surface under uniaxial

load reveals that long wave morphological perturbations are

unstable in the sense that they lead to a decrease of the

total free energy. Finally, in a later stage of the instability

one observes the formation of deep notches, which are

similar to cracks (see, e.g., [31–33]). Nevertheless, if solely

accounting for linear elasticity, this instability leads to a

breakdown of the physical description due to a finite time

cusp singularity: After a finite time, the unstable deep grooves

advance with infinitely high velocities and vanishing tip radii

(see, e.g., [34]).

This problem can be solved, for instance, by the inclusion

of elastodynamic effects which restore the selection of the

steady-state tip radius and velocity. Based on this recognition,

a minimal continuum theory of fracture was developed using

only well-established thermodynamical concepts [35]. In this

picture, a full modeling of a propagating crack not only

determines the crack speed but also the entire crack shape and

scale self-consistently, which leads to a description as a moving

boundary problem. The latter was then solved by basically two

different methods: First, a sharp interface multipole expansion

technique [36] and the fully dynamic phase field method

[37,38]. Remarkably, already this single parameter minimum

model selects steady-state propagation velocities appreciably

below the Rayleigh speed and shows a tip splitting instability

for high applied tensions. A shortcoming of the model is a

decaying velocity as a function of the driving force over a

significant range of applied stresses.

Recently, a similar continuum model of fracture was pro-

posed in [39], curing the problem of the finite time singularity

by viscoelastic damping. Apart from the usual dissipation

directly at the crack surface, viscous bulk dissipation takes

place in an extended zone around the crack. Hence, the

incoming flow of elastic energy is partially converted to surface

energy, in order to advance the crack, and thermal energy due

to viscous damping. However, this model does not capture a

branching instability for high applied loads in case of mode I

loading.

In this article we focus on elastic effects, taking into account

inertial effects as well as viscous damping. In this respect, the

model is applicable to brittle fracture, but nevertheless we

encounter effects which are similarly observed also during

plastic deformations; this is, in particular, bulk dissipation and

the blunting of the crack tip.

The purpose of the present paper is twofold. First, it

summarizes and extends the aforementioned work for the

limiting cases of pure elastodynamics and viscoelasticity.

Second, it introduces a description which contains both effects,

therefore capturing the benefits of them and overcoming the

limitations. We apply the model mainly to mode I, but also

mixed mode loadings consisting of both mode I and mode III.

Two different material transport mechanisms are considered

and compared.

The paper is organized as follows: In Sec. II we present the

continuum model of crack propagation in elastodynamic and

viscoelastic media. Then, in Sec. III, the crack tip selection

principles are discussed. The arising free boundary problems

are solved numerically by the use of sharp interface and phase

field methods, as presented in Sec. IV. Finally, we discuss the

predictions of the model in Sec. V.

II. CONTINUUM MODEL OF FRACTURE

We propose a description of fracture in the spirit of

elastically driven interfacial pattern formation processes. In

contrast to classical descriptions, where the tip is treated as

a singular point followed by a mathematical cut, we assume

the crack to be macroscopically extended, and, even more

important, to have a finite tip radius r0 ∼ h, as can be seen in

Figs. 1, 2, and 3.

This finite tip size implies that the volume inside the crack

is also finite, and—depending on the growth mechanism of the

crack—also a description of this inner “phase” is necessary.

The shape of the crack itself is not an input to the model, but is

determined self-consistently by the equations of motion for the

entire crack. In this sense, the description differs substantially

from classical models, where only equations of motion for

the singular crack tip have to be postulated or derived. One

of the advantages of such a description is that the entire crack

shape is a degree of freedom for the model, and therefore

not only the advance of the crack itself is described, but also

deformations of the crack contour behind the tip, and—what

is much more important—path selection is automatically

contained in such models [40].

The equations of motion for the crack depend on the

local elastic deformations, but also the local curvature of

the interface. In this way, they naturally capture the effect of

stress release through crack propagation, but also the increase

of interfacial energy due to crack elongation, which is the

basis for the Griffith criterion. It turns out that the desired

self-consistent selection of the crack shape is a nontrivial step,

since by the aforementioned ATG instability the tip tends to

become sharper and sharper, without a self-consistent selection

of a tip scale, if only static linear elasticity and interfacial

energy are taken into account.

Another important aspect is related to the definition of the

crack shape. We describe all patterns here in the Lagrangian

reference frame, which means that in this configuration the

mechanical deformations are not taken into account. In this

reference frame a straight cut, which is frequently used for

a mathematical description of a crack, would just appear as

a line, and has a vanishing tip radius. Under deformation,

however, the crack surfaces separate, in particular, the distance

between the lips would scale as �u ∼ KI r
1/2/E, where r is

the distance from the crack tip, KI the mode I stress intensity

factor and E is the elastic modulus of the material. Pure

elasticity describes only the deformation of materials, but it

does not provide evolution equations of the motion of the crack.

In particular, linear elasticity would predict a σ ∼ KI r
−1/2

stress singularity at an infinitely sharp crack tip. Physically,

one would expect regularization of this singularity either by

nonlinear effects or a finite tip radius r0, which serves as

a cutoff parameter. In this work we do not follow the first

regularization approach and consider only linear mechanical

models, which will be linear elastodynamics and a linear

(kelvin) viscoelastic model; instead, we consider situations

with a finite tip radius.
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FIG. 1. (Color online) Sketch of crack propagation mechanisms.

(a) Bond breaking picture, depicted in the reference frame. The

black line indicates the crack, and there mechanical boundary

conditions have to be applied. The atoms which change their atomic

configuration due to bond breaking are shown in red. (b) The same

crack in the deformed configuration, showing the separation of

interface atoms. (c) Dislocation emission from the crack tip leads

to blunting. The atomic neighborhood relations change in the bulk, as

illustrated by the green atoms. (d) Sketch of the atomic configuration

in the reference frame for a crack with finite tip radius. (e) The same

in the deformed state. (f) Propagation of a crack with finite tip radius

demands mass transport, since atoms have to be removed from the

tip region. Here we illustrate the crack growth by surface diffusion.

The transparent background shows the configuration in the previous

time step; the solid red atoms the interface atoms after advance by

one lattice unit.

Let us briefly contrast this description with conventional

pictures of crack growth on an atomistic level. In brittle

materials, the intuitive interpretation of crack propagation

is due to the breaking of bonds at sharp crack tips. This

changes the neighborhood configuration for an atom at the

crack tip only in the sense that connections to some of the

FIG. 2. Schematic picture of the steady-state crack propagation

by surface diffusion. The crack contour, indicated by the solid black

line, separates the viscoelastic medium from the advancing “vacuum

bubble.” During the propagation the total amount of solid material is

conserved.

adjacent atoms is lost, and simultaneously the distances to

the other atoms are changed due to elastic deformations. This

breaking of bonds corresponds to the advance of the sharp

cut in a continuum model [see Figs. 1(a) and 1(b)]. Ductile

effects lead to the emission of dislocations from the crack

tip and lead to blunting [see Fig. 1(c)]. These plastic events

introduce also configurational changes in the bulk in the sense

that the neighborhood relations are changed. We point out

that this is a bulk effect, which, of course, also reaches the

crack, since the dislocation lines have to terminate at surfaces.

Notice that on the continuum level such modeling requires

either equations of motions for dislocations or—in a coarse

grained framework—plasticity models. In this article, we focus

on yet another effect, which is not captured by the above

picture, which is due to material rearrangement at surfaces

[see Figs. 1(d)–1(f)]. It means, literally speaking, that atoms

are removed and attached to the crack surfaces at different

places, and therefore the neighborhood configurations are

changed now in the sense of a surface effect. For a crack

that has a finite tip radius already in the reference frame, the

advance of the crack means that atoms have to be removed

from the tip. They can be deposited again on different regions

of the crack surface, and in this case we can interpret the

material transport as a surface diffusion process. Alternatively,

we could imagine that the removed atoms become part of a

“gas phase” inside the crack. A gas has, of course, a lower

density than the solid, which would require that ultimately the

gas atoms have to be ejected from the crack (if the density

difference is not accommodated by the crack opening). For

FIG. 3. Sketch of a propagating crack, where the phenomenon

of fracture is interpreted as a phase transformation process from a

viscoelastic solid to a “dense gas” phase. The crack surface, indicated

by the solid black line, separates the original viscoelastic medium

from the growing dense gas phase.
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convenience, we do not consider this fast “hydrodynamic”

transport and ignore the density difference between the solid

and the “dense gas phase.” Notice that in both cases of material

transport the atoms undergo long-range transport (on the

atomic scale), and therefore their neighborhood configuration

changes completely.

On the continuum level, we therefore have to provide equa-

tions of motion for each interface point of the crack, reflecting

either surface diffusion (SD) or the phase transformation (PT)

mechanism between the solid and the gas phase. They are

coupled to the elastic fields in a nonlocal and nonlinear manner.

The motion is then driven by the tendency to lower the total

free energy of the system. An important and obvious difference

is that for SD the number of “solid” atoms is conserved, which

is not the case for the PT mechanism.

For both transport mechanisms, we consider the growth

of a single crack in a strip geometry, in order to have a

constant stress intensity factor. We restrict to an effectively

two-dimensional system by the assumption of translational

invariance in the z direction and assume the strip to be infinitely

extended in the direction of propagation, which in our case is

chosen to be the x direction. We mainly concentrate on mode I

fracture, which means that the applied tensile forces act in

the y direction perpendicularly to the crack faces. Apart from

this, we also discuss results from the application of mode III

loadings and linear combinations of these two modes. Since the

crack tip is macroscopically extended, no singularity appears

and the whole crack pattern can be described consistently in

the continuum approximation.

In a Lagrangian description of linear elasticity, the elastic

state of the system is described through a continuous displace-

ment field ui . Then, the strains are defined as the symmetrical

spatial derivatives of the displacements,

ǫik =
1

2

(

∂ui

∂xk

+
∂uk

∂xi

)

. (1)

As the total stress field depends linearly on both the strain as

well as the strain rate, we conveniently decompose it into a

strain and a strain-rate dependent part,

σ
(tot)
ik = σ

(el)
ik (ǫik) + σ

(vis)
ik (ǫ̇ik), (2)

where σ
(el)
ik and σ

(vis)
ik are the elastic and viscous stresses,

respectively, and ǫ̇ik denotes the time derivative of the strain

ǫik . Furthermore, we restrict the considerations to fully

isotropic media. Then, as given by Hooke’s law, the elastic

stresses are

σ
(el)
ik =

E

1 + ν

(

ǫik +
1

1 − 2ν
δikǫll

)

, (3)

where E is Young’s modulus and ν the Poisson ratio, and we

use the Einstein sum convention. By construction, the viscous

stresses are formally similar to the elastic stresses [41], and

we therefore write them for a kelvin viscoelasticity model as

σ
(vis)
ik =

η

1 + ζ

(

ǫ̇ik +
1

1 − 2ζ
δik ǫ̇ll

)

, (4)

with the two viscous constants η and ζ .

The evolution of the elastic degrees of freedom within the

viscoelastic solid is given by Newton’s equation of motion,

and the elastic displacements ui have to fulfill

∂σ
(tot)
ik

∂xk

= ρüi, (5)

where ρ is the mass density. This equation ensures locally a

force balance between the elastic stress and viscous friction

on the left-hand side and inertia on the right side. These

equations have to be supplemented by mechanical boundary

conditions, which are given below for the two different

transport mechanisms.

A. Surface diffusion

For crack growth by SD, the crack is filled with vacuum,

and therefore we impose stress free boundary conditions at the

crack contour,

σin + ρυnu̇i = 0, (6)

where n is the direction normal to the interface, and υn is the

normal interface velocity (see Fig. 2). The second term on

the left-hand side accounts for momentum conservation at the

solid-vacuum interface. We point out that in the dynamic limit,

when the crack propagation velocity υ is of the order of the

materials sound speed, this term becomes important [4].

So far, for an arbitrarily given crack shape and known strain

history, the mechanical problem is unambiguously determined

and can be calculated by Eqs. (1)–(6) together with the outer

boundary conditions at the borders of the strip, which specify

the externally applied loading. Next we have to formulate

an evolution equation for the crack contour. The motion of

the interface is caused by thermodynamically induced mass

transport processes, which diminish the total free energy of the

system. The local driving force for crack propagation is given

by the chemical potential µ at the solid-vacuum interface [42],

µ = �

(

1

2
σ

(el)
ik ǫik −

1

2
ρu̇2

i − γ κ

)

, (7)

with γ being the surface energy per unit area and κ the surface

curvature, which is counted to be positive, if the crack shape

is convex; the atomic volume � appears since the chemical

potential is defined as free energy per particle. We point out

that the viscous stresses do not appear in the chemical potential,

since viscous dissipation is a sole property of the bulk, whereas

the chemical potential is needed to describe energy dissipation

through the motion of the interface. Furthermore, we note that

due to inertial effects, also the kinetic energy density appears

in the chemical potential. Counterintuitively, it appears with

sign opposite to that of the potential energy; this can be derived

rigorously from variational principles [38,43].

For SD the motion of the crack surface is proportional to

the divergence of a flux of solid material along the interface.

This flux of material is induced by gradients of the chemical

potential. We express the motion of the interface by the local

normal velocity υn and obtain

υn = −
Ds

γ�

∂2µ

∂2s
, (8)

046213-4



BRITTLE FRACTURE IN VISCOELASTIC MATERIALS AS . . . PHYSICAL REVIEW E 83, 046213 (2011)

where ∂/∂s denotes the tangential derivative and the diffusion

coefficient Ds has a dimension [Ds] = m4 s−1. We note that

for SD the amount of solid material is conserved during the

crack propagation. A typical steady-state crack shape using

SD is shown in Fig. 2. One can see that the crack first opens up

to a tip diameter 2h, and then closes again due to the condition

of material conservation.

We point out that this description of mass transport is not

limited to SD in its literal sense only. Often, many complicated

physical processes like plastic bulk flow take place in a small

zone around the tip. Assuming that this zone is relatively

thin, the mass transport can effectively be described by SD,

where the detailed information about the process zone is

hidden in the diffusion coefficient in the spirit of a lubrication

approximation.

B. Phase transformations

Here we discuss crack propagation by means of a PT

process, where the solid matrix transforms into a “broken

gas phase” with vanishing elastic moduli. We assume that the

gas phase and the viscoelastic medium to have equal mass

densities ρ. Furthermore, the interface between this dense

gas phase and the medium is considered to be coherent,

that is, the displacements are continuous there. With these

assumptions, two central simplifications are achieved. First,

instead of Eq. (6) the mechanical boundary conditions are

σin = 0, (9)

which means that no velocity dependent correction appears

here, since by the continuity of velocities and densities also

the momentum is continuous. Second, the expression for the

chemical potential is replaced by

µ = �

(

1

2
σ

(el)
ik ǫik − γ κ

)

, (10)

where the kinetic energy contribution does not appear. The

reason for this simplification is the continuity of the kinetic

energy density, because the above expression of the chemical

potential should be more correctly be interpreted as the

chemical potential difference between the adjacent phases

[38,43]. Notice that the inner phase is assumed to be infinitely

soft; therefore, it has a vanishing elastic energy density. Again,

the motion of the interface is locally expressed through the

normal velocity, which in this case is directly proportional to

the chemical potential difference at the interface,

υn =
D

�γ
µ, (11)

with a kinetic coefficient D having the dimension [D] =
m2 s−1. Of course, using this model, the amount of solid

material is not conserved during crack propagation. In this

sense, our model is strongly related to phase field models of

fracture based on a nonconserved order parameter [44–46].

The crucial difference is that the current model is based

on well-defined sharp interface equations, and therefore the

predictions do not depend on inherently numerical parameters

like a phase field interface width. A typical steady-state crack

shape using PTs is shown in Fig. 3. In contrast to SD the crack

keeps its opening and does not close far behind the tip (in the

reference state) due to the absence of material conservation.

However, although SD seems to be more adequate for a

description of fracture, from a numerical point of view the

treatment of Eq. (8) is much more time-consuming due to

the higher-order spatial derivatives, which are not present in

Eq. (11). Therefore, modeling of fracture as a phase transition

process offers numerical advantages.

III. CRACK PROPAGATION: SELECTION PRINCIPLES

The self-consistent selection of the crack velocity, the tip

radius, and even the entire crack shape is a central aspect

of the present theory, and will be discussed in more detail

in this section. The bulk equation (5), in combination with

Eqs. (6)–(8) for the SD, or Eqs. (9)–(11) for the PT mechanism,

describes the dynamics of the two models. In both cases they

lead to a complicated free boundary problem.

Before starting to solve the full free boundary problem

numerically, we first discuss qualitatively the existence of

steady-state solutions by the use of scaling arguments. Here

the term steady state describes a nonequilibrium solution, for

which the crack is moving with a constant velocity υ, and in a

comoving frame of reference—following the crack tip with the

same steady-state velocity υ—the shape is constant in time.

The following scaling arguments are fairly generic and can

similarly be applied to both the SD and the PT model and

predict the characteristic velocity and tip scale.

We address the selection problem on different levels. First,

we use pure dimensional arguments for potential length and

velocity scales, and we show that only with the additional

parameters stemming from viscoelasticity or mass density

microscopic tip scales appear, which can select a tip radius.

This argument captures already the essential physical situation,

and therefore the following, more extended, discussion could

be skipped for first reading. There we revisit the behavior

with a more detailed analysis of the equations of motion; the

basic outcome of this more advanced investigation is that for

the purely elastostatic case tip radius and velocity cannot be

selected independently. We then show how the inclusion of

inertial or viscoelastic effects cures this problem.

The simplest assessment is to determine the possible

nontrivial parameter combinations in the model in order to

form a length scale. For pure linear static elasticity, however,

it is not possible to set a microscopic length scale out of

the material parameters and the applied load, and therefore

selection is not possible in this case. The lack of such a

length scale is the reason for the cusp singularity of the ATG

instability and the impossibility of a steady-state crack growth

under these conditions.

The situation is different when inertial effects are taken into

account because then the Rayleigh wave speed (the sounds

wave speed at a free surface), υR ∼ (E/ρ)1/2, appears as

characteristic velocity scale in the problem. Then we expect

the crack velocity to be of this order, υ ∼ υR , and we can

form a microscopic length scale by the parameter combinations

(Ds/υR)3 for SD and D/υR for PT, which we expect to be the

tip scales in this case. If instead of inertial effects viscous bulk

damping becomes relevant, the characteristic velocity scale

is υ0 ∼ (DsE
3/η3)1/4 for SD and υ0 ∼ (DE/η)1/2 for PT.
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Consequently, we expect the characteristic tip scales

(Dsη/E)1/4 for SD and (Dη/E)1/2.

For a more detailed analysis, we have to inspect the fields

and the equations of motion. We first return to the case without

viscous or inertial effects. We note that the stresses on the

boundary of the crack tip with finite radius r0 scale as

σ ∼ Kr
−1/2

0 , (12)

where K is the stress intensity factor. Since this analysis can

be applied to both mode I and mode III, we do not indicate

the loading conditions in the stress intensity factor. Also, by

boundary conditions the normal and shear stresses on the crack

surfaces vanish (or are small, if the momentum transfer term is

included for SD, provided that the crack speed is substantially

smaller than the speed of sound). Therefore, the only nontrivial

stress component is the tangential stress, which depends on the

shape of the entire crack.

Although the stress scaling (12) appears to be natural in

the framework of fracture mechanics, it is not trivial, and

therefore we discuss it in more detail. Since we intend to

describe cracks with a finite tip radius, the stress field typically

contains not only r−1/2 terms but also faster diverging terms

r−3/2,r−5/2, . . .. These terms cannot be present for sharp crack

tips, since they would lead to a diverging elastic energy, but

cannot be excluded for finite r0, since then the divergency is

cut off. Therefore, the stress field typically consists of singular

and regular parts,

σ (r,θ ) ∼
K

(2πr)1/2

(

1 + c1

f (1)

r
+ c2

f (2)

r2
+ · · ·

)

+ σreg,

(13)

in a polar representation. For the sake of brevity we do

not write the angular dependence f (i) explicitly. The regular

part of the stress σreg contains only constant contribution

(“T stress”) and positive powers of r . In the region r0 � r ≪
W , that is, close to the (small) crack tip on the scale of the

system size W , the ascending powers can, however, be ignored.

Also, the T stress scales as K/W 1/2 and therefore vanishes

for large system sizes and given stress intensity factor K .

Consequently, σreg = 0 for the further discussion. The above

representation is the heart for the multipole expansion method

that is introduced below in Sec. IV A. Notice that the higher

order modes seem to violate the anticipated r
1/2

0 scaling of

Eq. (12). To understand this situation, we inspect a crack with a

different tip radius, which we obtain by a geometrical rescaling

r → r/α, and with the same stress intensity factor. We make

the scaling ansatz for the stresses σ̃ for this rescaled geometry

as σ̃ (r,θ ) = βσ (r/α,θ ) in relation to the original problem. At

large distances from the tip, the main mode σ ≃ K/(2πr)1/2

prevails; hence, σ̃ (r,θ ) = βσ (r/α,θ ) ≃ βα1/2K/(2πr)1/2. On

the other hand, both cracks look identical at large distances,

where they become sharp straight cracks, and therefore β =
α−1/2. On the crack surface, where also the higher modes

are relevant, the stress of the rescaled problem is therefore

σ̃ (r̃0,θ ) = σ̃ (αr0,θ ) = σ (r0,θ )α−1/2. Hence, for a crack with

a four times sharper tip, the surface stresses are two times

higher, as stated in Eq. (12).

Obviously, the interface curvature in the tip region scales

as κ ∼ 1/r0. Hence, as long as only static linear elasticity is

taken into account, all contributions to the chemical potential

scale as µ ∼ r−1
0 . Consequently, a rescaling of the equations

of motion (8) or (11) is possible: Formally, the equations

of motion depend only on the dimensionless combinations

υr3
0 /Ds for the SD mechanism and υr0/D for the PT

dynamics. All other parameters combine to the dimensionless

driving force � = K2(1 − ν2)/2Eγ (in case of pure mode I

loading), where � = 1 corresponds to the Griffith point. In

other words, the radius r0 and the steady-state velocity υ cannot

be selected separately within the framework of the pure static

theory of elasticity. Even if a steady-state solution exists, it

would still degenerate to a one-parameter family of solutions

with either fast cracks with small tip radii or slow cracks with

large tip scales. It turns out, however, that no steady-state

solutions exist, which is exactly the aforementioned cusp

singularity of the ATG instability.

In addition to this inspection of the behavior in the tip

region, we can get more insights from the analysis of the

crack shapes in the tail region, where the elastic stresses have

decayed. To that end we assume that the crack is growing in the

steady-state regime in the positive x direction with a constant

velocity υ. For the SD model, the shape equation (8) can be

integrated once, and in the comoving frame of reference we

obtain

υy = −
Ds

γ�

∂µ

∂s
.

This is a complicated, nonlinear third-order equation with

nonlocal contributions arising from the elastic fields, since

σik depends on the entire shape. In the tail region the shape

equation is simplified to the third-order differential equation

Dsy
′′′ = υy due to the decay of the stress fields, which

has two growing solutions and one decaying solution. Only

the latter y(x → −∞) = A exp[(υ/Ds)
1/3x] asymptotically

describes the physically allowed shape. We switch to a polar

coordinate system x = r(θ ) cos θ,y = r(θ ) sin θ for the tip

region and focus on symmetrical solutions, r(θ ) = r(−θ ).

Since the physical properties, curvature and stresses, do not

depend on the choice of the coordinate system but only on

the crack shape, we can arbitrarily choose r(θ = 0) = r0,

with the a priori unknown tip radius r0 = 1/κ(0). Then

from symmetry considerations and the definition of the

tip curvature, κ = (r2 + 2r ′2 − rr ′′)/(r2 + r ′2)3/2, the natural

conditions r ′(0) = r ′′(0) = 0 arise. Integration over the upper

interface θ > 0 requires the suppression of the two growing

exponentials at the tail, which imposes two boundary con-

ditions. For a given external loading, these two conditions

can be fulfilled by a proper selection of the tip radius r0 and

growth velocity υ. However, since the use of only linear static

theory of elasticity does not allow the independent selection

of both the tip radius r0 and the steady-state velocity υ, the

selection will not suppress both growing exponentials at the

same time, and consequently a cracklike solution does not

exist [35].

For the PT model, a similar argument can be given [36,37].

In the tail region, where the elastic stresses have decayed,

the shape equation becomes simply −υy ′ = Dy ′′. Its general

solution, y(x) = h + B exp(−υx/D), contains the finite crack
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opening h and a growing exponential. Notice that, in contrast

to the SD process, a finite opening 2h cannot be excluded

since we do not have to obey mass conservation here.

Suppressing the exponential and selecting a finite tail opening

h finally requires again the independent selection of both the

steady-state propagation velocity and the crack tip radius.

Consequently, a steady-state solution for a growing crack in

the framework of the static theory of elasticity does not exist.

The situation changes if additional length scales enter into

the description, and two natural aforementioned extensions for

a description of crack growth are viscous bulk dissipation and

dynamic elasticity. Nonlinear elastic or plastic effects are also

conceivable, but are beyond the scope of the present article

[34,47–50].

Although the viscous stress defined in Eq. (4) introduces

two new parameters, the time scales, which are introduced

by them, should typically be of the same order. By setting

ζ = ν we restrict to the case of only one additional time

scale τ = η/E to simplify the situation. Then, considering

static elasticity and viscous bulk dissipation, additionally the

dimensionless ratio υ/υ0 with υ0 = (D/τ )1/2 for PT and

υ0 = (Dsτ
−3)1/4 for SD appears in the equations of motion,

and therefore a rescaling is no longer possible. Then this

additional free parameter makes it possible to independently

select both the tip scale r0 and the steady-state velocity υ, so

that the two growing exponentials can be suppressed.

To make this more explicit, we note that by virtue of Eqs. (3)

and (4) for steady-state growth σ (vis) = −υτ∂xσ
(el). Therefore,

as consequence of the force balance condition (5) we get a

correction to the elastic stresses which depends on the dimen-

sionless parameter υτ/r0. For SD, in the interface evolution

equation the two nondimensional parameters s1 = υr3
0 /Ds and

s2 = υτ/r0 appear, which contain different combinations of

the tip radius and the crack velocity; hence, these two nonlinear

eigenvalues can be selected independently to suppress the two

growing exponential terms in the tail region. Since s1 and s2

are of order unity for driving forces of order one, we therefore

get s1s
3
2 = υ4τ 3/Ds ∼ 1; hence, υ ∼ (Dsτ

−3)1/4, which is

the predicted velocity scale υ0. Analogous arguments can be

used for the PT mechanism. Similarly, we obtain v ∼ vR if

inertial effects are relevant, and the microscopic tip scales are

r0 ∼ (Ds/υR)3 for SD and r0 ∼ D/υR for PT [35,37,38].

Altogether, we conclude that independent of the considered

mass transport mechanism, steady-state growth of cracks is

possible if apart from static elasticity at least one additional

effect is taken into account. Furthermore, for both mechanisms

a tip splitting is at least conceivable for high applied tensions

due to a secondary ATG instability: Since σ ∼ Kr
−1/2

0 in

the tip region and the local ATG length is LG ∼ Eγ/σ 2, an

instability may occur, provided that the tip radius reaches by

blunting the order of the ATG length.

The similarity of the scaling arguments to predict steady-

state growth for both SD and PT emphasizes the close

connection between the two models. From a physical point

of view the SD model is probably more appealing, but also

more difficult to solve numerically. However, the preceding

arguments suggest that many generic properties of the model

should also be reflected in the simpler PT model. In Sec. V we

give a detailed comparison between the model behaviors.

IV. NUMERICAL METHODS

The free boundary problem, which arises from the coupling

of nonlocal dynamic elasticity or viscoelasticity to the interface

kinetics, is studied by the use of two complementary methods,

which are presented in this section.

The first method is a sharp interface method, based on the

expansion of the elastic fields in a series of eigenfunctions of a

straight mathematical cut. This multipole expansion method,

designed to simulate efficiently steady-state crack propagation,

delivers precise results in two limiting cases: Slow crack prop-

agation with viscoelastic effects and elastodynamic fracture

without bulk dissipation. Situations where both effects play a

role can only be treated in a perturbative manner.

As second method we use a fully dynamic phase field

model with a sharp interface limit corresponding to our model

equations. In contrast to the multipole expansion method the

phase field approach makes it possible also to investigate

transient behaviors and crack branching and also makes it

possible to model both elastodynamic and viscoelastic effects

in a uniform framework. However, obtaining quantitative

results comparable with those by the multipole expansion

method is computationally very expensive.

A. Multipole expansion method

For the solution of the steady-state problem of crack

propagation with the multipole expansion method we divide

the problem into two parts: first, the solution of the mechanical

problem for an arbitrary, but known crack shape and velocity υ

and, second, the evolution of the crack contour and adjustment

of the velocity. These two steps are iterated until a self-

consistent steady-state solution is found.

To simplify the appearance of viscosity in our equations,

we assume ζ = ν and thereby focus on the case of only

one additional time scale τ = η/E due to viscosity. With

this simplification the dissipative stress tensor is related to

the elastic stress tensor by σ
(vis)
ik = τ σ̇

(el)
ik . We note that for

mode III fracture such a simplifying parameter choice is not

necessary, since there always only one time scale appears. For

steady-state growth, the time derivative in the comoving frame

is then replaced by a spacial derivative with respect to the crack

propagation direction x, ∂/∂t = −υ∂/∂x. Consequently, the

steady-state mechanical bulk equilibrium equations [Eq. (5)],

containing both viscoelastic and inertial effects, become

∂

∂xk

(

σ
(el)
ik − τυ

∂

∂x
σ

(el)
ik

)

= ρυ2 ∂2ui

∂x2
. (14)

The basic idea for solving the elastic problem is to

write the elastic fields as an expansion in eigenfunctions of

the differential operator corresponding to the equations of

motion (14) for a straight moving cut. Formally, the structure

of the stress fields becomes

σ ∼
K

(2πr)1/2

(

1 + c1

f (1)

r
+ c2

f (2)

r2
+ · · ·

)

, (15)

where the coefficients ci are the amplitudes of the eigenmodes

f (i). Then, the bulk equations are automatically fulfilled, and

the problem is reduced to a linear one for finding proper

expansion coefficients ci in order to satisfy the boundary
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conditions [Eq. (6) or (9)]. This reduction makes this method

numerically very efficient.

However, to our best knowledge, there is no closed solution

to the full problem, which means that the eigenfunctions for the

viscoelastodynamic problem of a moving mathematical cut are

not known. Therefore, we focus here on two limiting cases of

Eq. (14): first, the static limit of viscoelasticity, where υ ≪ υR ,

and therefore the term on the right-hand side is neglected, and,

second, the elastodynamic limit where the viscous damping

vanishes, that is, τ = 0. Here we mainly deal with mode I

fracture, and therefore we illustrate the corresponding proce-

dures to solve both the viscoelastic problem and the elastody-

namic problem for these loading conditions. The subsequent

technical subsections for the determination of the eigenmodes

for these two cases can be skipped for the first reading. For

mode III loading, which is mathematically simpler, similar

approaches can be found; in particular, the solution of the

viscoelastic mode III problem is presented in [39].

1. Viscoelasticity

First, we consider the limit of small crack velocities, that is,

υ ≪ υR . In this limit the term from inertia on the right-hand

side Eq. (14) can be omitted. Therefore, the force equilibrium

condition in the static limit for the steady-state situation reads

∂

∂xk

(

σ
(el)
ik − τυ

∂

∂x
σ

(el)
ik

)

= 0. (16)

For the solution of this problem, we use Airy functions, which

are well known in static elasticity. Here we generalize this

approach to viscoelastic materials.

We begin with the treatment of a static elastic problem and

introduce for convenience a complex Airy function U(z), with

z = x + iy. The usual (real) Airy function is defined as its real

part:

U (x,y) = Re[U(z)]. (17)

The usual relations to obtain stresses are

σxx =
∂2U

∂y2
; σxy = −

∂2U

∂x∂y
; σyy =

∂2U

∂x2
. (18)

Compatibility, that is, the existence of a displacement field

from which the elastic strains can be derived, is equivalent to

�2U = 0. (19)

In most cases, the complex Airy function U is not analytic, and

the reason is that its real part has to satisfy only the biharmonic

equation and not the Laplace equation. We therefore make the

ansatz

U = f + zg, (20)

with f (z) and g(z) being analytic functions (apart, e.g.,

from a branch cut for crack problems); the bar denotes

complex conjugation. This means that with f = f1 + if2 and

real functions f1(x,y),f2(x,y) the Cauchy-Riemann equations

hold:

∂f1

∂x
=

∂f2

∂y
,

∂f1

∂y
= −

∂f2

∂x
. (21)

With the above structure Eq. (20) the biharmonic equation

Eq. (19) is automatically fulfilled. Stresses can be expressed as

σxx = Re[−f ′′ + 2g′ − zg′′], (22)

σxy = Im[f ′′ + zg′′], (23)

σyy = Re[f ′′ + 2g′ + zg′′], (24)

where the ′ denotes the derivative with respect to z. The

expression for displacements is

2µ(ux + iuy) = (3 − 4ν)g − zg′(z) − f ′(z), (25)

with µ = E/2(1 + ν), and thus we get for the derivatives and

strain components

ǫxx =
1

2µ
Re[2(1 − 2ν)g′ − zg′′ − f ′′], (26)

ǫyy =
1

2µ
Re[2(1 − 2ν)g′ + zg′′ + f ′′], (27)

∂ux

∂y
=

1

2µ
Im[−4(1 − ν)g′ + zg′′ + f ′′], (28)

∂uy

∂x
=

1

2µ
Im[4(1 − ν)g′ + zg′′ + f ′′], (29)

ǫxy =
1

2µ
Im[zg′′ + f ′′]. (30)

As mentioned before, the total stress decomposes into an

elastic and a viscoelastic contribution,

σ
(tot)
ik = σ

(el)
ik + σ

(vis)
ik , (31)

where the latter is for steady-state growth

σ
(vis)
ik = −vτ

∂

∂x
σ

(el)
ik , (32)

and consequently we have the force balance condition (16).

In principle, it is not required that elastic and viscous stress

satisfy the force balance separately, but only Eq. (16) must

hold for the total stress. Also, only the elastic fields need to

satisfy compatibility conditions. However, as we will see, all

fields fulfill these conditions even separately.

The ansatz is that both the elastic and the total stress

fields can be derived from Airy functions which satisfy the

biharmonic equation. In particular, we anticipate the following

structure of the complex Airy functions:

U
(tot) = F + zG, U

(el) = f + zg, (33)

with analytic functions f (z),g(z),F (z),G(z). For the present

crack problem these functions are not analytic everywhere,

but have a branch cut along the negative real axis (see

below). As we have seen above, the real Airy functions

U (tot) = Re(U (tot)), U (el) = Re(U (el)) then satisfy the bihar-

monic equation. Stresses can be derived from Eqs. (22)–(24).

Provided that the following equation is fulfilled,

U (el) − vτ
∂

∂x
U (el) = U (tot), (34)

then the steady-state force balance (16) is fulfilled and a

valid elastic displacement field exists by construction. We note

that the complex Airy functions are not differentiable in the

complex sense due to the appearance of the complex conjugate
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factor z̄, and thus we cannot generalize ∂xRe = Re d/dz.

However, with the above ansatz (33) Eq. (34) is fulfilled if

f + zg − vτ (f ′ + g + zg′) = F + zG (35)

holds. Separating “harmonic” and “biharmonic” parts gives

f − vτ (f ′ + g) = F, (36)

g − vτg′ = G. (37)

Again, if (36) and (37) are satisfied, then (35) is also valid.

We write the functions F and G now as series expansions

in the set of eigenfunctions of a straight mode I cut,

F =
∞

∑

m=−1

Amz1/2−m, (38)

G =
∞

∑

m=0

Bmz1/2−m. (39)

Notice that the summations start from different values of m,

because the function G appears with an additional prefactor

z in the complex Airy function. The lowest value of m

corresponds to the main mode. In order to have the correct

mode I symmetry, the coefficients of expansion Am and Bm

are real.

The far-field behavior is controlled by the term with the

lowest value of m, which is the main mode. On large distances

r from the tip, the crack looks like a semi-infinite mathematical

cut, and this is reflected by the proper r−1/2 decay of the

stresses in this purely elastic regime. The prefactor of the

main mode is therefore related to the stress intensity factor;

thus,

A−1 =
KI

3
√

2π
. (40)

Also, we have the requirement that on the straight cut normal

and shear stresses have to vanish; hence,

B0 = 3A−1. (41)

We write now also the functions f and g as series

f =
∞

∑

m=−1

Ãmfm, (42)

g =
∞

∑

m=0

Bmgm, (43)

with analytical functions fm and gm, which are determined

below. We define

Ãm =
{

Am (Am 	= 0),

Bm (Am = 0).
(44)

Notice that we assigned for convenience

B−1 = 0. (45)

Provided that

gm − vτg′
m = z1/2−m (46)

for m = 0,1,2, . . . , and either

fm − vτ

(

f ′
m +

Bm

Am

gm

)

= z1/2−m (47)

for Am 	= 0 or

fm − vτf ′
m = vτgm, (48)

for Am = 0 hold for m = −1,0,1, . . . , then Eqs. (36) and (37)

are satisfied.

Notice that the distinction between the regular case Am 	= 0

and the singular case Am = 0 is relevant also for practical

purposes: For numerics we cut off the expansion of F at M − 1

and G at M; then BM 	= 0, but AM = 0, so for the last mode

we always encounter this situation.

Obviously, the equation for f (47) can be solved as soon as

the solution of the equation for g (46) is known.

The homogeneous equation for g, g(h)
m − vτg(h)

m

′ = 0

has the solution g(h)
m = Dm exp(z/vτ ). Variation of constant

Dm → Dm(z) then gives the general solution of Eq. (46),

gm = Dm(z) exp(z/vτ ), (49)

with

Dm(z) = −
1

vτ

∫

exp(−z/vτ )z1/2−mdz + const, (50)

where the integration constant has to be chosen such that

exponential growth terms in (49) are suppressed. We obtain

in particular for m = −1 with the proper integration constant

D−1(z) = exp(−z/vτ )

[

z3/2 +
3

2
vτ z1/2

]

+
3

4
(vτ )3/2

√
πerfc

√

z/vτ , (51)

with the (complex) complementary error function erfc. Thus,

we obtain

g−1(z) = z3/2 +
3

2
vτ z1/2

+
3

4
(vτ )3/2

√
π exp(z/vτ )erfc

√

z/vτ . (52)

All higher modes can be obtained from the recursion relation

gm+1 = −
1

(

1
2

− m
)

vτ
[z1/2−m − gm], (53)

which follows from Eqs. (49) and (50) and the proper choice

of the integration constant. In particular,

g0 = z1/2 + 1
2
(vτ )1/2

√
π exp(z/vτ )erfc

√

z/vτ , (54)

which is the main mode term.

The equation for f [Eq. (47)] is treated in the same way,

and we obtain

fm =

{

gm + Bm

Am
vτ hm (Am 	= 0),

vτ hm (Am = 0),
(55)

with another analytical function hm(z). It obeys the recursion

relation

hm+1 =
1

(

1
2

− m
)

vτ
[−gm + hm] (56)
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and

h−1 = z3/2 +
15

4
vτ z1/2 −

3

4
(vτ )1/2

√
π

×
(

z −
5

2
vτ

)

exp(z/vτ )erfc
√

z/vτ . (57)

In particular,

h0 =
3

2
z1/2 −

1

2
(vτ)−1/2

√
π

(

z −
3

2
vτ

)

exp(z/vτ )erfc
√

z/vτ .

(58)

To summarize, Eqs. (53)–(57) provide a series of eigen-

functions for the steady-state equation of motion [Eq. (16)].

From these eigenfunctions, via Eqs. (42) and (43), together

with (22)–(24), the total stress field can be calculated as

a function of the coefficients of expansion A0,A1, . . . and

B1,B2, . . .. While the main mode coefficients A−1 and B0

are given by Eqs. (40) and (41), the remaining coefficients

{Ai},{Bi} are now determined in order to fulfill the conditions

σnn = σns = 0 on the actual crack contour (n and s are normal

and tangential directions, respectively). The optimization

of these expansion coefficients is equivalent to finding the

minimum of the function

R({Ai},{Bi}) =
∫

(

σ 2
nn + σ 2

ns

)

ds, (59)

with respect to {Ai},{Bi}, where the integration is performed

along the crack contour.

2. Elastodynamics

Now we discuss the solution of the elastic boundary value

problem in the dynamic limit of vanishing viscous bulk

dissipation, that is, τ = 0. Therefore, we briefly review the

analysis given in [36]. Following Ref. [4,51], we introduce

two real functions φ(x,y,t) and ψ(x,y,t) which are related to

the displacements ui as follows:

ux =
∂φ

∂x
+

∂ψ

∂y
, uy =

∂φ

∂y
−

∂ψ

∂x
.

Using the decompositions of the displacement field, the steady-

state bulk equations (14) become homogeneous Laplace

equations,

∂2φ

∂x2
+

∂2φ

∂y2
d

= 0,
∂2ψ

∂x2
+

∂2ψ

∂y2
s

= 0, (60)

where the coordinates perpendicular to the crack are rescaled

by either yd = αdy or ys = αsy for either the function φ or

the function ψ . Here we have defined α2
d = 1 − υ2/c2

d and

α2
s = 1 − υ2/c2

s , where cd =
√

E(1 − ν)/ρ(1 − 2ν)(1 + ν)

and cs =
√

E/2ρ(1 + ν) are the dilatational and shear sound

speeds, respectively. Since we are looking for solutions

obeying the mode I symmetry, we propose the ansatz

φ =
∞

∑

n=0

Anr
3/2−n

d cos

(

3

2
− n

)

θd , (61)

ψ = −
∞

∑

n=0

Bnr
3/2−n
s sin

(

3

2
− n

)

θs, (62)

in rescaled polar coordinates, which are related to the co-

moving Cartesian coordinates via x = rd cos θd = rs cos θs ,

yd = rd sin θd , and ys = rs sin θs . For a crack with a sharp

tip, only the mode with n = 0 is allowed, which corresponds

to the usual σ ∼ r−1/2 behavior. For this mode, the boundary

conditions on the straight cut and the matching to the far-field

behavior demand

A0 =
8(1 + ν)

(

1 + α2
s

)

√
2π3E

[

4αsαd −
(

1 + α2
s

)2]
K

dyn

I , (63)

B0 =
2αd

1 + α2
s

A0, (64)

where K
dyn

I is the dynamical mode I stress intensity factor [4],

related to the static stress intensity factor as

K
dyn

I = Kstat
I

(

(1 − ν)
4αsαd −

(

1 + α2
s

)2

αd

(

1 − α2
s

)

)1/2

. (65)

Each eigenmode of Eqs. (61) and (62) satisfies the elastody-

namic bulk equation (60). The coefficients A0 and B0 are

determined by Eqs. (63) and (64) for the correct far-field

behavior, whereas all other modes decay faster. Consequently,

we obtain the formal stress field expansion,

σik =
K

dyn

I

(2πr)1/2

(

f
(0)
ik +

N=∞
∑

n=1

Anf
(n)
ik,d + Bnf

(n)
ik,s

rn

)

, (66)

where f
(n)
ik,d (θ,υ) and f

(n)
ik,s(θ,υ) are the universal angular

distributions for the dilatational and shear contributions which

also depend on the propagation velocity. In analogy to the

procedure above, the unknown coefficients of the series

expansion are determined by minimization of the residuum

R({Ai},{Bi}) =
∫

(σni + ρυnu̇i)
2 ds, (67)

with respect to the coefficients Ai and Bi , for a given crack

contour and steady-state velocity; the integration domain is

the crack contour. Notice that this residuum is used for SD,

whereas for PT it is the same as in Eq. (59).

3. Approximative viscoelastodynamic model

To the best of our knowledge, there is no exact solution

of the full problem given by Eq. (14), which contains

both dynamical and viscous effects. We therefore suggest

an approximative model, which captures essential physical

aspects and gives exact results in the limit of vanishing viscous

damping and treats viscous damping in the sense of a rigorous

perturbation theory for low velocities.

To motivate the model let us first consider the case of static

elasticity, where inertial effects can be neglected. Thus, we

solve the elastic problem consisting of three ingredients, that

is, bulk equilibrium ∂σ
(el,0)
ij /∂xj = 0, stress free boundaries at

the crack surfaces, σ
(el,0)
in = 0 and σ (el,0) ∼ KI r

−1/2 at large

distances, and additionally compatibility, which means that

the strain tensor, which is related to the stress via Hooke’s

law, can be derived from a displacement field. We use here the

superscript (el,0) to indicate that we are dealing here with a

purely elastic field, which is later used as zeroth order for a
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perturbative treatment. By these requirements the solution for

σ
(el,0)
ij is formally uniquely defined (apart from translational

and rotational degrees of freedom).

On the other hand, for the viscoelastic steady-state problem

the total stress consists additively of the elastic and viscous

stress, σ
(tot)
ij = σ

(el)
ij + σ

(vis)
ij , where the viscous stress is related

to the elastic stress by σ
(vis)
ij = −υτ∂xσ

(el)
ij (we assume here

again that we have only one viscoelastic time scale and that

the crack moves in the positive x direction). Now the total

stress has to fulfill mechanical equilibrium, ∂σ
(tot)
ij /∂xj = 0,

the total normal and shear stresses have to vanish on the

crack surfaces, σ
(tot)
in = 0 and far away (where the behavior is

anyway purely elastic) we have the same asymptotic behavior

σ
(tot)
ij ∼ KI r

−1/2. Also, as we have seen in the section on the

multipole expansion method, also the total stress field satisfies

compatibility. Therefore, by uniqueness of the solution, the

solution for the total stress is here exactly the same as before

for the purely elastostatic problem, σ
(tot)
ij = σ

(el,0)
ij .

Now we use the solution of the elastic problem and

introduce viscosity perturbatively, where we use τ as small ex-

pansion parameter. The zeroth-order solution σ
(el,0)
ij generates a

viscous stress to first order in τ , that is, σ
(vis,1)
ij = −υτ∂xσ

(el,0)
ij .

However, up to first order the sum of these two terms,

σ
(el,0)
ij + σ

(vis,1)
ij , does not yet satisfy boundary conditions on

the crack surfaces (but they do satisfy the bulk force balance

conditions), and therefore another elastic correction term must

appear to first order, σ
(el,1)
ij . Hence, up to first order the

total stress is σ
(tot)
ij = σ

(el,0)
ij + σ

(el,1)
ij + σ

(vis,1)
ij + O(τ 2). On

the other hand, by the aforementioned uniqueness of the

solution, σ
(tot)
ij = σ

(el,0)
ij to all orders. Consequently, we obtain

σ
(el,1)
ij = −σ

(vis,1)
ij = +υτ∂xσ

(el,0)
ij .

For the equations of motion we need an expression for

the chemical potential, which depends on the elastic part of

the stress only. Hence, we get a first-order correction to the

chemical potential

�µ(1) = �υτǫ
(0)
ij

∂σ
(el,0)
ij

∂x
. (68)

Here we have made use of the property σ
(el,0)
ij ǫ

(1)
ij = σ

(el,1)
ik ǫ

(0)
ik ,

which follows from Hooke’s law. Notice that there is no need

to decorate the strain with a superscript (el), since strain is

by definition an elastic property (the viscous stress is related

to the strain rate). This description is a rigorous perturbative

treatment of the viscoelastic theory in the quasistatic limit,

υ ≪ υR .

However, this concept cannot strictly be extended to the

case of dynamical elasticity, since there on the right-hand side

of the Newtonian equation the acceleration term ρüi contains

only elastic displacements (so even in the force balance

equation for the total stress the right-hand side contains the

elastic accelerations), and therefore the purely elastodynamic
and the total viscoelastodynamic stresses do not obey the same

equations.

Instead, we use the above recipe (68) to incorporate viscous

damping in the chemical potential also with inertial effects, and

consider this as an approximative viscoelastodynamic model;

of course, this model is not rigorously derived, but captures

essential aspects of the physics and is still exact for τ = 0 and

becomes a rigorous perturbation theory for υ ≪ υR . Thus, in

the framework of this model the chemical potential for the PT

model is

µ = �

(

1

2
σ

(0)
ik ǫ

(0)
ik + υτǫ

(0)
ik

∂σ
(0)
ik

∂x
− γ κ

)

, (69)

where the stresses σ
(0)
ik and strains ǫ

(0)
ik are calculated from the

elastodynamic eigenfunctions (61) and (62). Notice that for

the SD mechanism, we also have to account for the kinetic

energy density as in Eq. (7).

4. Steady-state crack growth

Once we can solve the mechanical problem for arbitrary

shape, we can solve the free boundary problem for the steady-

state crack propagation. The latter is described, depending on

the mechanism of propagation, by the set of Eqs. (7)–(11) in

case of the PT model or by Eqs. (7) and (8) in the case of

SD. The strategy for solving the problem is as follows: For a

given guessed initial crack shape and velocity, we determine

the unknown coefficients An and Bn from the boundary

conditions. Afterward, we calculate the chemical potential

and the normal velocity at each point of the interface. The

new shape is obtained by advancing the crack according to the

local interface velocities. This procedure is repeated until the

steady state is reached, which means that the shape of the crack

in the comoving frame of reference remains unchanged [52].

This “quasidynamical” approach provides a natural way to

solve the problem, as it follows the physical configurations to

reach the steady state. Then the following relation between the

local normal velocity and the steady-state velocity υ holds,

υn − υnx = 0, (70)

where nx is the x component of the normal vector pointing

into the solid phase. This is a purely geometrical relation

and therefore it is independent on the mechanism of crack

propagation; that is, it is valid for the SD model as well as for

the PT model. This equation gives us an alternative approach

to the “quasidynamical approach.” Namely, we directly solve

the nonlinear equation (70) as a functional of the crack shape

and the tip velocity υ by Newton’s method complemented by

Powell’s hybrid method [53,54] and we refer to this as the

“steady-state approach.” We stress here that the steady-state

approach is preferable especially in case of the SD model,

where we thus can avoid solving the fourth-order differential

equation (8).

Finally, we define the dimensionless driving force

� = �I + �III =
1 − ν2

2Eγ
K2

I +
1 + ν

2Eγ
K2

III , (71)

where we also include the possibility of mixed-mode loading.

Here, � = 1 corresponds to the Griffith point, and the

energetics necessarily require � > 1 for crack growth.

B. Phase field modeling of fracture

During the past years, phase field modeling has emerged as a

promising approach to model crack propagation by continuum

methods (see [26] for a recent review). This method is
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especially advantageous due to its high versality to study quite

complicated crack patterns as well as multicrack situations

[55]. Nowadays, phase field models capture many known

features of cracks [44–46,56]. However, a significant attribute

of most of these descriptions is that the scale of the growing

patterns is always set by the phase field interface width, which

is a purely numerical parameter and not directly connected to

physical properties; therefore, these models do not possess a

valid sharp interface limit. Alternative descriptions, which are

intended to investigate the influence of elastic stresses on the

morphological deformation of surfaces due to phase transition

processes, are based on macroscopic equations of motion.

However, they suffer from inherent finite time singularities

which do not allow steady-state crack growth unless the tip ra-

dius is again limited by the phase field interface width [38,57].

Since the phase field method was originally developed to

mainly simulate the dynamics of solidification processes, it

is of course more natural to formulate a phase field model

for fracture using the PT mechanism [Eq. (11)]. However,

we mention here that it is also possible to formulate phase

field models for crack propagation by SD [58–60], and,

for example, the initial stage of the ATG-instability has

already been reproduced using such kind of phase field

models. Nevertheless, for the current purpose, we restrict the

discussion to phase field modeling for crack propagation using

nonconserved order parameter dynamics [see Eq. (11)].

For the formulation of the present phase field model, we

start with the introduction of a continuous phase field φ, which

will discriminate between the different material states. We de-

fine φ = 1 for the viscoelastic medium, and φ = 0 for the “bro-

ken phase.” This region does not support elastic stresses (the

material is broken), but still it has the same density as the sur-

rounding matrix. Therefore, we use the notation of a dense gas

phase to underline that we do not have vacuum inside the crack.

We start from a free energy functional, similar to [57],

F [φ,ui] =
∫

V

(fs + fdw + fel) dV, (72)

where fs(∇φ) = 3γ ξ (∇φ)2/2 is the gradient energy density

and fdw(φ) = 6γφ2(1 − φ)2/ξ is the double well potential,

guaranteeing that the free energy functional has two local

minima at φ = 0 and φ = 1 corresponding to the two distinct

phases of the system. The form of the double well potential

and the gradient energy density are chosen such that the

phase field parameter ξ defines the interface width and the

parameter γ corresponds to the interface energy of the sharp

interface description [59]. Finally the elastic energy density

contribution is

fel =
h(φ)E

2(1 + ν)

(

ν

1 − 2ν
ǫ2
ii + ǫ2

ik

)

, (73)

where h(φ) = φ2(3 − 2φ) interpolates the elastic modulus

between zero for the dense gas phase and one for the

viscoelastic medium. It is the simplest polynomial satisfying

the necessary interpolation conditions h(0) = 0 and h(1) = 1

and having a vanishing slope at φ = 0 and φ = 1, in order

not to shift the bulk states. Here, for the sake of brevity we

consider the Poisson ratio to be phase independent.

The evolution of the elastic fields is determined by the

principle of momentum conservation according to Eq. (5),

ρüi =
∂

∂xi

(

σ
(el)
ik + σ

(vis)
ik

)

, (74)

where the elastic stresses are defined as the derivative of the

elastic free energy density with respect to the strains, that is,

σ
(el)
ik = ∂fel/∂ǫik . In order to have vanishing viscous damping

inside the crack, we define the viscosity parameter η to be

phase field dependent, that is, η → ηh(φ) in Eq. (4), while the

parameter ζ remains phase independent.

The phase field dynamics is related to the functional

derivative of the free energy with respect to the phase field

variable,

∂φ

∂t
= −

D

3γ ξ

(

δF

δφ

)

ui=const.

, (75)

where D corresponds to the above-mentioned kinetic coef-

ficient of the PT model. Here it is assumed that the viscous

dissipation does not affect the phase field dynamics. According

to our sharp interface model of crack propagation, we consider

viscosity to be a bulk property, which does not affect the

phase change behavior directly. We ignore local heating effects

through bulk or interfacial dissipation, assuming that the heat

diffusion is sufficiently fast.

Using the phase field method, we investigate crack growth

in a strip geometry with fixed displacements at the upper and

lower grips. In contrast, the multipole expansion technique

[36,39] is designed to model a perfect separation of the crack

tip scale to the strip width W , that is, W ≫ D/υR or W ≫
D/υ0, respectively. In most real cases, crack tips are very tiny,

and therefore it is theoretically desirable to describe this limit.

For the phase field method, however, a finite strip width W

is necessary, and a good separation of the scales therefore

requires time-consuming large-scale calculations. We shift the

system such that the tip remains in the horizontal center. This

allows to study the propagation for long times until the crack

reaches a steady-state situation. Apart from this finite size

restriction, the interface width ξ is introduced as a numerical

parameter, and the phase field method delivers quantitative

results only in the limit that all physical scales are much larger

than this length scale. The latter has to be noticeably larger

than the numerical lattice parameter �x, but the results show

that the choice ξ = 5�x is sufficient. Therefore, to obtain

quantitative agreement with the results from the multipole

expansion method, we have to satisfy the hierarchy relation

ξ ≪
D

υR

≪ W or ξ ≪
D

v0

≪ W, (76)

which is numerically very hard to achieve.

We developed a parallel version of the phase field code

which is running on up to 2048 processors, with system sizes

up to 8192 × 4096 · (�x)2 (�x is the lattice unit). However,

for qualitative results we typically use WυR/D = 86 and

D/υRξ = 1.9, where the total size of the system in grid

points is 2048 × 800. All computations are performed on

the supercomputer JUGENE operated at the Research Center

Jülich.
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The dimensionless driving force � decomposes into mode I

and mode III contributions, and according to Eq. (71) it is

defined for the strip geometry as

� = �I + �III =
E

2γW

(

δ2
I

2(1 − ν2)
+

δ2
III

1 + ν

)

. (77)

Here δI is the above-mentioned fixed displacement by which

the strip is elongated vertically, whereas δIII is a fixed

displacement by which the strip is sheared in the z direction.

The value � = 1 corresponds to the Griffith point.

V. RESULTS

In the following section we give a comprehensive overview

on the different results. As has been mentioned above, we

consider two different material transport mechanisms, SD

and PT. From a theoretical point of view, two different

physical mechanisms, that is, viscous dissipation and inertial

effects, are important to provide selection mechanisms for the

steady-state velocity and the crack tip structure. These two

cases can be considered as limiting situations for slow and fast

cracks, and here a quantitative treatment not only with phase

field but also sharp interface methods is feasible (multipole

expansion method). The crossover behavior, where both effects

are relevant, is modeled using perturbation techniques for

the multipole expansion method and fully dynamical phase

field simulations. Furthermore, apart from steady-state growth,

branching instabilities also can occur, which also is discussed.

Finally, we consider different loading modes, and we start the

discussion of the results for pure mode I fracture before, in the

following section, mixed mode situations with a combination

of mode I and mode III loading are investigated.

Apparently, the different physical situations and numerical

methods lead to a certain complexity of the results. A concise

summary of the results is therefore given in Table I.

A. Opening mode fracture

In this section we discuss exclusively mode I fracture in the

different variants of the model. As discussed before, selection

is of central interest for this pattern formation aspect of

fracture, and two principal mechanisms have been introduced

before, the selection through viscoelastic bulk damping and

the inertia limitation of the crack speed. In all following

calculations we use ζ = ν = 1/3. Then, τ = η/E is the only

remaining viscous time scale, and we define the dimensionless

viscosity strength χ = υ2
R/υ2

0 , where υR is the Rayleigh speed

and υ0 = (Dsτ
−3)1/4 for the SD model, while υ0 = (D/τ )1/2

is used for the PT model.

First we deal with slow crack propagation with a steady-

state velocity much smaller then the Rayleigh speed, that is,

υ ≪ υR . In this case dynamic effects are negligible, and the

application of static elasticity is legitimate, χ = ∞. Next we

discuss the limit of fast crack propagation with vanishing

viscous dissipation, where the steady-state velocity υ and

the finite tip radius r0 are selected by dynamic effects only,

χ = 0. A more general situation, which contains both effects,

is discussed in the framework of a perturbation analysis using

the multipole expansion method and fully dynamical phase

field simulations, as well as non-steady-state crack growth

with crack branching.

The different kinetic mechanisms PT and SD lead to very

similar results in general, apart from the fact that SD implies

material conservation, and therefore the crack shapes differ

(compare Figs. 2 and 3). However, an important difference is

that for SD steady-state physically relevant solutions do not

exist without viscoelastic damping.

1. Slow cracks

In this regime it is assumed that the sound speed is much

larger than the crack velocity, and therefore inertial effects can

be neglected.

We start by reviewing the results for SD, as presented in

[39]. As for all SD models, only multipole expansion technique

results are available, since the modeling of SD with phase field

methods is more cumbersome [58–60]. The numerical results

for mode I fracture, as obtained from the simulations, are

shown in Figs. 4 and 5. The inset of Fig. 4 shows a typical

steady-state crack shape, which has the characteristic features

of a finite tip radius and vanishing surface separation in the tail

region, which results from the material conservation condition,

as discussed before. We point out that the crack is shown in the

Lagrangian reference frame, that is, without elastic displace-

ments, as it would appear if suddenly the mode I loading was

removed. The maximum vertical diameter of the crack defines

here the tip scale 2h. The velocity plot Fig. 4 shows only

finite velocities above � ≈ 2.6, and from there on a strictly

monotonic increase of the steady-state velocity as function of

the driving force. We did not find any indications that this

solution branch terminates at higher driving forces. Notice

that the crack speed is set by the characteristic viscoelastic

velocity v0 = (Dsτ
−3)1/4. Reducing the driving force coming

from high values, the crack velocity rapidly drops to very small

values at � ≈ 2.6, and below this value the crack growth veloc-

ity is very close to zero (and not shown in the plot). Hence, there
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FIG. 4. Steady-state tip velocity υ/υ0 for a mode I crack as a

function of the driving force � in case of the SD model. The results

are obtained with the multipole expansion method in the viscous limit.

The inset shows the corresponding crack shape for � = 10.0. Both

directions x and y are scaled with the half maximum height h of the

crack.
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TABLE I. Brief summarizing comparison of the different growth modes.

Surface diffusion (SD) Phase transformation (PT)

Viscoelastic limit: χ = ∞ Viscoelastic limit: χ = ∞
Creep branch: 1 < � < 2.6 Creep branch: 1 < � < 2.6

Regular growth for � > 2.6 Regular growth for � > 2.6

Velocity grows monotonically with driving force Velocity grows monotonically with driving force

Velocity scale υ0 ∼ (Dsτ
−3)1/4 Velocity scale υ0 ∼ (D/τ )1/2

Tip scale h0 ∼ (Dsτ )1/4 Tip scale h0 ∼ (Dτ )1/2

No branching No branching

Inertial limit χ = 0

No self-consistently selected tip radius in

the range 1 < � < 1.14

Inertial limitχ = 0 Steady-state solution for � > 1.14

Mode I No physically relevant solution Velocity decaying function of �

Velocity scale υR ∼ (E/ρ)1/2

Tip scale h0 ∼ (D/υR)1/2

Crack branching for � > 1.8

Viscoelastodynamic regime 0 < χ < ∞ Viscoelastodynamic regime 0 < χ < ∞
Creep branch for low driving forces Creep branch for low driving forces

Velocity first increases with �, then decrease Velocity first increases with �, then decrease

No steady-state solutions beyond a critical No steady-state solutions beyond a critical

driving force, afterward branching expected driving force, afterward branching expected

Wide range of � for steady-state solutions Small range of � for steady-state solutions

Higher viscosity leads to lower crack speeds Higher viscosity leads to lower crack speeds

Range of steady-state solutions larger for Range of steady-state solutions larger for

higher viscous damping higher viscous damping

Viscoelastic limitχ = ∞
Strong blunting below � = 1.1 (ductile-to-

brittle transition)

Steady-state regime: 1.1 < � < 3.8

Mode III Velocity grows monotonically for 1.1 < � < 3.5 Viscoelastic limitχ = ∞
Velocity decays for 3.5 < � < 3.8 Logarithmic opening of the crack

Velocity scale υ0 ∼ (Dsτ
−3)1/4

Tip scale h0 ∼ (Dsτ )1/4

No steady-state solutions for � > 3.8,

where branching is expected

Viscoelastic limit χ = ∞
Higher mode I contribution leads to shift of

onset of branching toward higher �

Mode I + III Creep branch with a low velocity plateau Viscoelastic limit χ = ∞
For low � faster growth for higher mode Logarithmic opening of the crack

III contribution may enable development of

crack front instability

is a very rapid transition between different growth behaviors

at this finite value of the driving force, and we call the regime

1 < � < 2.6 the “creep branch.” Notice that the literal Griffith

point is located at � = 1, but nevertheless it seems that signif-

icant crack growth starts only at a substantially higher driving

force (“apparent Griffith threshold”). In the creep branch

almost all elastic energy is dissipated by viscoelastic damping;

for a more detailed discussion of this point, we refer to [39].

Figure 5 shows the crack height h/h0 with h0 = (Dsτ )1/4 as

a function of the driving force for SD in the viscoelastic limit.

Again, the results are obtained by the multipole expansion

method. The behavior is similar as for the crack velocity, as

we also see here a monotonic increase as function of the driving

force, since this increases the energy dissipation at the crack

surfaces. When the driving force is reduced, the crack tip scale

suddenly becomes very small at � ≈ 2.6, and below this value

the crack becomes very sharp, h/h0 ≪ 1.

Next, we discuss the results to the same regime of slow

mode I crack growth (viscoelastic regime), but with the

PT mechanism. Here we performed simulations using both

the multipole expansion approach and phase field modeling.

We point out that the phase field model does not contain

only viscoelastic damping but also inertial effects, that is,

the appearance of the acceleration term in the Newtonian

046213-14



BRITTLE FRACTURE IN VISCOELASTIC MATERIALS AS . . . PHYSICAL REVIEW E 83, 046213 (2011)

 0

 0.1

 0.2

 0.3

 0.4

 1  2  3  4  5  6

h
/h

0

∆

FIG. 5. The crack height, as defined in the inset of Fig. 4, for the

SD model in the viscoelastic limit. The characteristic length scale is

defined as h0 = (Dsτ )1/4. Below the value � = 2.6 the crack tip size

becomes small, and simultaneously the crack velocity drops to very

small values (“creep branch”); then almost all dissipation stems from

viscous bulk damping.

equations of motion. For the phase field results in Fig. 6 we use

χ = 2; thus, υR =
√

2υ0. This means that the velocity scales

are not fully separated, and as soon as υ ≈ υ0, the velocity

has already reached a substantial fraction of the the sound

speed, and dynamical effects start to become relevant. Since

the crack speed is ultimately limited by the Rayleigh speed,

it is therefore not surprising that the velocities obtained by

the phase field method are lower than those by the multipole

expansion technique, which assumes v/vR ≪ 1. This behavior

is visible in Fig. 6 for driving forces � > 4.
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FIG. 6. Comparison of the tip velocity υ/υ0 as a function of

the driving force � for mode I fracture using the PT model,

with υ0 = (D/τ )1/2. The solid line corresponds to the results of

the multipole expansion method with infinite viscosity strength.

The triangles correspond to the phase field results with viscosity

strength χ = 2. The inset shows the crack shape for the PT model

with � = 3.6 obtained with the multipole expansion method. Both

directions x and y are scaled with the half tail opening h of the crack.

(a)

(b)

(c)

FIG. 7. Phase field crack shapes for χ = 2 and different driving

forces after the time t/τ = 24.4: (a) � = 1.25, (b) � = 3.6, and

(c) � = 5.0. We set W/h0 = 60.9 and h0/ξ = 2.6. The thickness

of the interface corresponds the phase field interface width. For

high driving forces, the tip radius does not depend on the interface

thickness. Notice that for the lowest driving force the crack opening is

not constant along the crack but increases toward the tail. The reason

is that due to the elastic energy stored in the strip there is an effective

short-range repulsion between free surfaces.

Overall, the behavior for the PT model is very similar to the

SD results, which includes in particular a monotonic increase

of the steady-state velocity as function of the driving force.

Again, we did not find indications for crack branching at higher

velocities without inertial effects, υ ≪ υR . As for the SD

model, the solution branch with υ ∼ υ0 terminates at � ≈ 2.6,

and below we have again a creep branch with υ ≪ υ0.

Similarly, we also have here the drop of the crack tip scale h/h0

[with h0 = (Dτ )1/2 for the PT mechanism] to very small values

for � < 2.6. Here the phase field model brings in another

effect, which comes from the interface thickness ξ as intrinsic
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numerical parameter. To obtain results that coincide with

the multipole expansion method it is necessary to maintain

the scale separation ξ/h ≪ 1. We have demonstrated for the

inertial regime that it is possible to reach this limit, although it

is numerically very demanding [38]. Here, however, we rather

consider the interface thickness as additional “microscopic”

cutoff scale, which prevents that the crack tip scale drops

below this value; this effect can be seen from the steady-state

crack shapes (see Fig. 7). Therefore, for phase field modeling

the creep branch does not exist, and consequently the crack

velocity continues to decay smoothly down to � = 1.

For moderate driving forces around � = 4, the qualitative

agreement between phase field results and the velocities from

the multipole expansion method is good.

For comparison with the phase field shapes, the inset of

Fig. 6 shows a typical steady-state crack contour obtained

with the multipole expansion method in the limit of static

viscoelasticity. Again, the shape is drawn without elastic

displacements, which should be added to obtain the real shape

under load. The crack tip scale is selected self-consistently,

and the finite time cusp singularity of the ATG instability does

not occur. Therefore, we can conclude that the sole presence

of viscous bulk dissipation is a way to cure this well-known

problem [39]. Since we do not have a conservation law for the

amount of material inside the crack, the pattern looks different

in comparison to the SD crack shape.

Finally, we remark, that within the “static” limit (without

inertial effects) a branching instability does not show up for

mode I fracture neither in the PT model nor for the SD

mechanism. The phase field model of course contains inertial

effects, and therefore for � ≫ 1 one always finds branching

events once υ ∼ υR . In contrast, for pure mode III fracture

and mixed mode scenarios within the SD model, which are

discussed below, an instability appears even in the static

limit [39].

2. Inertial limit

Here we consider situations where the crack speed becomes

comparable to the Rayleigh speed, while it is assumed that the

viscous damping is negligible, that is, χ = 0. Surprisingly, for

SD no physically reasonable steady-state solutions exist, and

therefore we discuss only the PT mechanism. For that, we

briefly review the results of our previous work [36–38].

Here rather small scale phase field simulations [37] de-

livered a picture which was in conflict with very precise

multipole expansion method results [36], since the predicted

driving force dependence of the steady-state velocity came

out with opposite slope. This discrepancy was resolved in

[38] by performing a large series of phase field simulations

for different system sizes W and tip scales, and careful

extrapolation of the crack velocity to the limit ξ/h → 0 and

h/W → 0. The main result in this context was the quantitative

agreement of the steady-state crack velocities υ/υR obtained

from both numerical methods, as shown in Fig. 8. The small

deviation for � = 1.8 is due to the fact that this value is already

close to the threshold of the branching instability, which

cannot be captured by the multipole expansion method. With

this costly quantitative comparison, we found in particular

evidence for the remarkable prediction that the steady-state
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FIG. 8. Quantitative comparison of steady-state crack velocities

obtained from the multipole expansion technique and the extrapolated

values from phase field simulations, for the limiting case of χ = 0.

The gray line color indicates results where a negative tip curvature

was measured. The inset shows multipole expansion crack shapes

of the stable (black curve � = 1.3) and the unstable solution (gray

curve � = 2.3). Both directions x and y are scaled with the half

tail opening h of the crack. Below the point �c ∼ 1.14, indicated by

the dotted line, we show the velocity of the dissipation-free solution,

where the tip radius r0 is selected by a microscopic length scale.

velocity decays weakly with increasing driving force [36].

Nevertheless, the product υh/D, which controls the dissi-

pation, is still growing monotonically. This counterintuitive

outcome means that within the dynamic limit (χ = 0) of the

model the dissipation is mainly increased due to tip blunting

instead of a rise of the crack speed. Tip blunting then always

leads to a tip branching instability for higher driving forces, due

to a secondary ATG instability as mentioned in Sec. III. In the

multipole expansion method, which captures only steady-state

solutions, this transition toward unstable crack growth is

reflected by a change of sign of the tip curvature at � ≈ 1.8,

which is in agreement with the critical driving force for the

branching instability in phase field modeling. In Fig. 8 we

indicate this change by a change from the black to the gray

line color, and in the inset we show two corresponding crack

shapes. For further details, we refer to [36].

Although the model provides a selection of the crack tip

scale and velocity in the limit of vanishing dissipation, it

suffers from the fact that for the small range of driving forces

near the Griffith point the velocity of the crack is finite while

the size of the crack tip approaches zero. More precisely,

the velocity branch in Fig. 8 terminates at � = 1.14 with a

finite velocity, and below this value no steady-state solutions

are found. Thus, the solution branch does not naturally connect

to the Griffith point � = 1. Here another tip scale mechanism

would be necessary, in order to restore selection. In the phase

field method (without performing the extrapolation to the sharp

interface limit ξ/h → 0) the interface thickness serves here as

numerical tip scale selection mechanism [37]. In the same way,

setting the minimal allowed opening by hand, also the situation

for the multipole expansion method can be improved [36].

However, since our intention was to formulate a continuum
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model of fracture which is independent of any microscopic

length scales, for the present purpose, such introduction of a

finite cutoff length scale is unsatisfactory. Then, on the other

hand, the sudden velocity jump and the subsequent decay

with increasing driving force are unavoidable outcomes and

seem to disagree with intuitive expectations and experimental

findings. This, together with the fact that in the inertial limit no

steady-state solutions exist for SD, has been a major motivation

for considering viscoelastic bulk dissipation as an alternative

selection mechanism. We point out that the selection of tip

velocity and radius via viscous bulk dissipation as discussed

in the previous subsection neither suffers from the problem of

finite velocities slightly above the Griffith point nor requires

the introduction of an additional microscopic cutoff length

scale. On the other hand, for mode I the tip branching instability

does not occur without inertial effects. Therefore, to describe

the full picture of crack propagation under mode I loading, it

is highly desirable to account for both viscous dissipation as

well as dynamic effects, as is discussed in the next section.

3. Viscoelastodynamic regime

The rigorous treatment of the regime where both inertial

and viscoelastic effects are relevant has been performed with

the phase field model, and additionally an approximative

description with the multipole expansion method is possible.

The model, which has been introduced in Sec. IV A 3, has

the advantage that it is exact without viscous damping in the

inertial regime, χ = 0, and it is a rigorous perturbation

expansion for slow cracks, v ≪ vR , using the viscosity vτ/h

as a small expansion parameter, where h is the crack tip scale,

hence operating in the regime of large values of χ → ∞.

Therefore, this model makes it possible to gain qualitative

insights into the full problem of dynamic mode I crack

propagation including viscous bulk friction, for the both PT

mechanism and the SD.

We start the discussion of the results again for the SD model,

and the results are all obtained by the multipole expansion

method. As mentioned above, no physically reasonable steady-

state solutions exist in the purely inertial limit, χ = 0, and

we return to this point below. However, with the inclusion of

viscous effects within the present model, steady-state solutions

exist for finite values of χ , as shown in Fig. 9. In this plot the

velocity is shown on the scale of the Rayleigh speed vR , which

equals the viscous scale v0 for χ = 1. As in the purely viscous

limit, fast growth does not start at the literal Griffith point � =
1, but a higher value, which is located at around � ≈ 2.1 for

both shown paremeters χ = 0.5 and χ = 1 (below this value

we have again the creep branch with υ ≪ υ0). From this point

on the velocity first increases with increasing driving force

until it reaches a maximum and then it again decreases until

the termination in a bifurcation. We expect crack branching

beyond this point, since steady-state solutions do not exist in

this regime.

In agreement with the intuitive expectation that the cracks

should slow down by viscous damping, the velocity decreases

with the increase of the viscosity strength χ = υ2
R/

√

Dsτ−3.

At the same time, the bifurcation point, beyond which no

steady-state solutions exist, is shifted to higher driving forces.

This fact indicates that viscous damping suppresses crack
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FIG. 9. Viscoelastodynamic model results for the steady-state

velocity υ/υR as a function of the driving force � in case of mode I

crack propagation using the SD model. The solid line corresponds to

χ = 1.0, the dashed one to χ = 0.5.

branching, in agreement with the earlier observation that it

does not occur in the purely viscous limit. For very strong

viscous damping, χ → ∞, the velocity becomes small and is

then set by the viscous speed scale v0, as depicted in Fig. 4,

where it is a purely monotonically growing function of the

driving force.

On the other hand, the results show that upon reduction

of the viscous strength, that is, for smaller values of χ ,

the velocity increases. Finally, the curves first touch and

then terminate at the Rayleigh velocity, which is the upper

theoretical limit for mode I fracture. Then, for the inertia

limit the curves would start with the decaying part of the

curve at a finite value of � > 1 but with v = vR , and we do

not consider this as a physically plausible solution. However,

in the framework of the present model it becomes thereby

understandable why no “reasonable” solutions exist in the

elastodynamic limit.

Next, we inspect the behavior of the model for PT dynamics,

as obtained from the multipole expansion method. The results

for the same two different values of χ are shown in Fig. 10, and

exhibit a qualitatively similar behavior as for SD. Also here,

the growth starts from an “apparent” Griffith point, which

coincides with the value for SD, and below we find “creep

solutions” with very low velocities, which are not shown in the

plot. The reason for the agreement of these apparent Griffith

points is that for v ≪ v0 the chemical potential is basically zero

along the crack, for both SD and PT; also, below this value of

the driving force the behavior is dictated by bulk dissipation,

and therefore the transport mechanism on the crack surfaces

plays only a minor role.

From the apparent Griffith point on the velocities increase

monotonically quite rapidly up to a maximal value. Then the

velocity maximum is followed by a small range of driving

forces, where the velocity decreases with increasing driving

force. Crack branching is expected beyond the bifurcation

point. With increasing viscosity strength χ the driving force of

maximal velocity as well as the point where the curvature turns

negative are both shifted to higher driving forces. This supports

the conclusion that dynamic effects favor of the occurrence
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FIG. 10. Viscoelastodynamic model results for the steady-state

tip velocity υ/υR as a function of the driving force � in case of

mode I crack propagation using the PT model. The solid black line

corresponds to χ = 1.0, the dashed to χ = 0.5. The gray colored

solid line shows the steady-state velocities in the inertial limit, when

χ = 0.0 (see Fig. 8).

the tip splitting instability, or—vice versa—the presence of

viscous bulk friction helps to stabilize the crack against the tip

splitting instability, which is also qualitatively supported by

fully dynamic phase field simulations.

For χ → ∞ the results come closer to the previous curve

for the viscoelastic limit of the PT model, as shown in Fig. 6,

where the velocity is then on the scale v0. In contrast, with a

decrease of the viscosity strength the point of maximal velocity

is shifted more and more to the left until, finally, in the case

of vanishing viscosity, χ = 0, only the decaying part remains

(see also Fig. 8).

The PT and SD model have in common that the crack

velocity decreases with the increase of viscosity strength χ ,

while the turning point is shifted to higher driving forces. A

difference is that the point of maximal velocity and moreover

the tip curvature turning point appear at much higher driving

forces for the SD than for the PT model, which especially

also enlarges the regime, where the velocity decreases with

increasing driving force. Notice that the general effect that the

counterintuitive decay of the crack velocity as function of the

driving force, as observed in the inertial limit, is more and

more resolved with increasing viscosity strength.

The phase field method makes it possible to study crack

growth also in regimes where no steady-state solutions exist.

However, a quantitative determination of the onset of the

branching instability is computationally very expensive. The

onset of the irregular tip splitting behavior depends, in

particular, sensitively on the system size, because in relatively

small systems the branches of the crack cannot separate since

they are repelled by the boundaries. Therefore, the steady-state

growth is always stabilized by finite size effects. On the other

hand, initial conditions can trigger an instability, and then a

long transient is required to get back to steady-state solutions.

However, as shown in Fig. 11, even for a relatively high

viscosity strength χ = 2 we find the irregular tip splitting

behavior for � = 10.0.

FIG. 11. Irregular tip splitting scenario for a viscosity strength of

χ = 2 and � = 10.0. We set WυR/D = 170 and D/υRξ = 1.9, and

the size of the system is 1600 × 4096 grid points. The time t is given

in units D/υ2
R . The thickness of the interface corresponds the phase

field interface width.

B. Mixed mode fracture

Here we discuss predictions of the model beyond a pure

mode I loading. It turns out that the results change even

qualitatively for mode III. For a broader picture, we study

also situations with mixed mode loading (mode I + mode III),

but still assume that the crack shape is translational invariant

in the direction of the crack front line. We therefore suppress

effects like the development of a helical instability as studied

in [61]. We limit our investigations here to viscous effects (i.e.,

v ≪ vR), and only for the phase field model we also take into

account inertial effects. As before, we make the simplifying

assumption ν = ζ = 1/3, and therefore viscosity introduces

only one additional time scale, τ = η/E.

First we review our findings concerning the crack behavior

in the mixed mode scenario for the case of the SD model [39],

which were obtained by the multipole expansion method.

As shown in Fig. 12, the crack speed increases with the

driving force for pure mode III, until it reaches a maximum

at � ≈ 3.5; then it decreases, and obviously steady-state

solutions do not exist beyond the point � ≈ 3.8, where the

stable branch merges with another (unstable) solution. Beyond

the bifurcation point � ≈ 3.8 we expect crack branching, in

analogy to our findings for fast dynamic mode I fracture, as

discussed in the previous section. It is quite remarkable that

the presence of mode III loading contribution leads to the

occurrence of the tip branching instability even in the case of

static elasticity.

In Fig. 13 we also show the maximum height of the crack as

function of the driving force for different loadings. At � ≈ 1.1

the size of the mode III steady-state crack diverges and υ →
0. The viscous dissipation becomes negligible here, but the

surface dissipation remains finite. This point can be interpreted

as the point of ductile-to-brittle transition: Below it the size
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FIG. 12. Steady-state propagation velocity as function of the

driving force for pure mode III and a mixture with �III/� = 0.85

are displayed, for the SD model. The gray line belongs to steady-state

solutions with negative tip curvature. The inset shows the steady-state

crack shapes of the stable and the unstable solution in the case of

mixed mode loading with �III/� = 0.85 and a total driving force of

� = 3.6. Both x and y directions are scaled with the half maximum

height h of the crack.

grows indefinitely in time and the crack slows down, while

above this point steady-state solutions with a finite tip scale

exist.

Starting from a pure mode III crack, we can now include

additional mode I loadings. Figure 12 shows that this shifts the

bifurcation point toward higher values and therefore extends

the range of steady-state solutions toward higher driving

forces. From this we can conclude that mode III contributions

favor the appearance of the tip splitting instability. In contrast,

the preceding results suggest that inertial effects should

push the onset of branching back toward lower driving

forces.
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FIG. 13. Half crack height as a function of the driving force for

pure mode III and a mixture with �III/� = 0.85, for the SD model.

The length scale used here is h0 = (Dτ )1/4. The gray line belongs to

steady-state solutions with negative tip curvature.

It is important to note that mode I and mode III have a

different behavior, which is due to the behavior of the stresses

on the crack surfaces. We focus here on the elastic fields far

away from the tip, and in this region the behavior is purely

elastic. Without inertial effects, normal and shear stresses

vanish on the crack surfaces, and therefore it is the tangential

stress component which determines the elastic contribution

to the chemical potential. From the singular contributions to

the stress [4,18] one obtains on the crack lips elastic chemical

potential contributions µel(x → −∞) ∼ 1/x for mode III and

µel ∼ 1/x3 for mode I. This weaker decay of the singular fields

for mode III also influences the crack shapes.

Let us look at the asymptotic shape y(x) of a crack in

the SD model (in the tail region x → −∞) and focus on

polynomial terms. As discussed in [35] exponential terms

are very important for the selection of the crack velocity

and tip scale, which is related to the suppression of growing
exponentials in the tail region. Remaining exponentially

decaying terms are small in comparison to the power law terms

in the asymptotic regime, and therefore we suppress them here.

By the steady-state equations of motion [Eqs. (7) and (8)] we

obtain υy(x) ∼ Dsy
′′′ − const/x2 for mode III. Therefore, we

obtain a scaling behavior for surface diffusion as y(x) ∼ x−2.

Correspondingly, in the case of pure mode I loading for SD the

shape function decays like y(x) ∼ x−4, which is substantially

faster.

In the case of the PT model this effect is more pro-

nounced. Since the amount of “material” inside the crack is

not conserved, it is reasonable to look for shape functions

y(x) = h + δy(x), again with purely polynomial functions

δy(x). Neglecting the second derivative δy ′′(x) from the

curvature contribution to the chemical potential, we obtain

from Eqs. (10) and (11) in the comoving frame of reference

the following ordinary differential equation in the asymptotic

regime: −υδy ′(x) ∼ 1/x. Hence, in the case of a finite mode

III contribution the shape function does not even decay but

instead weakly grows like y(x) ∼ ln(x). This slow opening

of the crack becomes negligible for higher crack speeds. This

weak logarithmic growth of the asymptotic crack shape is also

confirmed by the multipole expansion method simulations, as

shown in the inset of Fig. 14 in the case of 50% mode III

contribution.

For the phase field simulations, which are also shown in

Fig. 14 for �I/�III = 1 and χ = 2, we find a remarkably

good agreement with the sharp interface results over the whole

range of driving forces. With the phase field method, we

observe two different kinds of growth: Slightly above the

Griffith point up to a driving force of about � ≈ 1.4, we obtain

solutions with almost zero velocity and an asymptotically

growing crack opening similar to what the shape from the

multipole expansion method shows. Then above this point the

solutions seem to regularize, and this weak growth of the shape

function is no longer observable using the phase field method,

probably due to the higher growth velocity. For pure mode

III loading this transition point is shifted to an even higher

driving force of about � ≈ 2.0, as we analyzed by means of

phase field simulations.

We point out that these shape peculiarities can also be

interpreted from the more general argument that no stationary

shapes exist in mode III if only elastic effects are taken into
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FIG. 14. Qualitative comparison of crack tip velocities υ/υ0 as a

function of driving force � for 50% mode III loading in the case of the

PT model. The solid line corresponds to the results of the multipole

expansion method in the viscous limit. The symbols correspond to

the phase field results with a viscosity strength χ = 2. For the phase

field, we used WvR/D = 86 and D/vRξ = 1.9; the size of the system

in grid points is 2048 × 800. The inset shows the multipole expansion

method steady-state crack shape for a total driving force of � = 12.0.

Both x and y directions are scaled with the half tail opening h of the

crack.

account. For this loading mode the only two nonvanishing

stress components σxz and σyz can be expressed as real

and imaginary parts of an analytic function. An equilibrium

solution would require a vanishing chemical potential along

the entire crack shape, which in turn demands that the

aforementioned analytic function is zero there, since the

elastic part is quadratic in both stress components. If an

analytical function is zero along a line segment, it must vanish

everywhere; this, however, is not compatible with a nontrivial

remote stress field.

Finally, we briefly mention that, due to the different

dissipative mechanisms that are relevant here, not all the elastic

energy flux is transported to the crack surface, as one expects

without bulk damping. A detailed analysis of the different

energy sinks—creation of new surfaces of the advancing

crack, velocity dependent dissipation at the crack surfaces and

viscous bulk damping—has been given in [39] (see Fig. 4

therein). Close to the Griffith point, all energy is required to

create the new crack surfaces. With increasing crack speed

more and more energy is dissipated, and surprisingly most

of the energy is finally dissipated by viscous bulk damping,

which leads to an increase of the velocity dependent fracture

energy. Furthermore, we found a strong dependence on the

mode of loading: For mode III dominated growth the surface

dissipation is significantly higher than for mode I dominated

cracks.

VI. SUMMARY AND CONCLUSION

We have presented a continuum description of fracture

in the spirit of elastically driven interfacial pattern forma-

tion processes. This description leads to moving boundary

problems, where not only the propagation velocity but also

the entire shape, and especially the tip radius, have to be

selected self-consistently. In particular, we have discussed two

different mechanisms of crack propagation. In the first case

the crack is considered to advance by material diffusion along

the crack surface. Second, we interpret fracture as a first-order

PT process of the solid material to a dense gas phase.

Scaling arguments were given that—to cure the finite

time cusp singularity of the ATG instability—one necessarily

needs an independent selection of the tip radius and the

steady-state velocity, which is not possible if solely static

linear elasticity is taken into account. Therefore, apart from

capillarity and linear elasticity, additional physical effects are

required for the determination of additional length and time

scales. Since we focus on gaining fundamental insights into

the phenomenon of fracture, we have concentrated here only

on well-established theoretical concepts for dynamic elasticity

and viscous dissipation.

The arising moving boundary problems have been solved

by two complementary methods. First, we have developed

an efficient steady-state sharp interface method based on the

expansion of the mechanical state in eigenfunctions of a

straight mathematical cut. Second, a fully dynamic phase field

description of crack propagation by first-order PT processes

has been developed.

With these numerical tools at hand, we have obtained

profound insights into the model behavior of our continuum

description of fracture. In particular, we have extensively

discussed mode I fracture, where the coupled influence of

dynamic elasticity and viscous dissipation leads to a model

behavior which reproduces three important generic features of

fracture: (i) The saturation of steady-state velocities apprecia-

bly below the Rayleigh speed, (ii) parameter regimes where

the steady-state velocity increases with increasing driving

force, and (iii) a crack branching instability for high applied

tensions. Apart from this, also mixtures of mode I and mode III

loadings have been discussed, and we have found in particular

a different behavior of the crack shapes, as well as a change

of the branching behavior. The main results are summarized

in Table I.

One counterintuitive outcome is that in the purely inertial

limit the crack velocity is a decaying function of the driving

force �. Although the energy balance, which demands

that the total dissipation increases with �, is, of course,

satisfied, this is realized here mainly by crack blunting.

Although the velocity decay appears only in a narrow range

prior to crack branching, this behavior seems to contradict to

usual observations. It is therefore an important outcome that

the additional presence of bulk damping via viscoelasticity

restores a regime of increasing velocity as a function of the

driving force. For the overdamped case, the velocity becomes

even a purely monotonously increasing function for mode I,

and only for larger mode III contributions a very small regime

of decaying velocities remains close to the onset of branching.

Therefore, the presence of viscous bulk damping, which

restores here growth velocity trends which are in agreement

with experimental findings, may also be interpreted as an

important aspect for other crack models.

Another central aspect of crack growth is branching, which

has also been observed, for example, in other phase field

models of fracture [46,62] and also predicted theoretically
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(see [63] and references therein). Especially in the inertial limit

this seems to be a phenomenon, which is rather independent

of the detailed model, and it can therefore be anticipated that

the effect is generic. Interestingly, the present model relates

this instability to a secondary ATG-like surface instability,

which appears due to a blunting of the tip for high applied

tensions [35]. For strong viscoelastic damping, however,

blunting appears to be much less dominant, which generally

results in the suppression of the branching with increasing

viscosity strength. From the point of view of loading, it is

rather the mode III fracture, which favors crack branching; also

additional crack front instabilities have recently been reported

in the context of phase field models in [61,64].

The future challenge is to combine the ideas, approaches,

and results from this work to “conventional” fracture models to

address the question of the relevance of the different physical

mechanisms. From a thermodynamical point of view, there

is a driving force for elastically induced PTs, which leads

to the fracture models presented here. However, it has to

be addressed to what extent and under what environmental

conditions these processes can be understood as dominant

mechanisms for crack propagation; for instance, the diffusion

along crack surfaces can be an efficient mechanism in

comparison to the pure bond breaking. We note that due

to the small tip scales the material transport is necessary

only on very short distances, and therefore a mechanism like

SD, which is usually assumed to be slow, can still lead to

fast crack propagation. Here it should be pointed out that

on such small scales a pure continuum description may not

be quantitatively accurate, but can still capture the essential

physical mechanisms. Furthermore, recent experimental inves-

tigations of fracture in brittle gels possibly reveal macroscopic

scales [65].

In general, the question concerning energy barriers should

play a central role and should shed light on the relevance of the

different mechanisms. We expect that material transport should

become relevant at elevated temperatures. In the conventional

picture for brittle materials a few bonds per atom have to be

broken to advance the crack by one lattice unit, and this event

takes place very localized at the (sharp) tip. The energetic cost

for such an “event” is on the order of eV/atom. In contrast, for

the “material transport picture” the overall energetic expense

is the same (since the same amount of new interfaces is

created), but a change of the bonding situation is required for

several atoms. However, since the diffusing atoms do not have

to be completely detached from the surfaces, energetically

efficient low-barrier paths may exist for the motion to the

next lattice site, and therefore the effective diffusion constant

can be relatively high. Furthermore, surface reactions, as a

recently predicted amorphization of diamond, can lead to a

bond weakening and material softening of even very brittle

materials within short times [66] and could facilitate even

higher transport rates.

We notice that in some cases nonlinear elastic corrections

may play an important role [48,49] and even lead to a high-

speed oscillatory instability [50]. For more ductile materials,

plastic processes due to dislocation emission are important,

and they have not yet been taken into account. We expect bulk

dissipation through plasticity to play a similar role as viscous

damping, as has been demonstrated above. There is, however,

an important difference between viscoelasticity and plasticity:

For the first, only elastic strains exist, and the stress is a

superposition of elastic and viscous contributions, whereas for

the latter the situation is opposite; for small strains an additive

decomposition of strains into elastic and plastic contributions

can be assumed, whereas the stress results only from elastic

contributions. Apart from that, plastic theories introduce the

concept of a yield stress σy , which is a natural cutoff for the

stress singularity. Therefore, from point of view of crack tip

selection, one can expect the radius r0 to be determined by this

cutoff, that is, r0 ∼ K2/σ 2
y . Since this leads to strong blunting,

SD is probably not efficient for high driving forces, and in fact

the contribution of SD to the propagation velocity would be a

decaying function of the driving force; hence, only for small

� it may compete with a bond-breaking mechanism together

with plastic flow. Another aspect is that plastic effects lead

to large deformations, and therefore from a technical point

of view it would then be desirable to describe the material

transport processes in the deformed system, which suggests

the use of a Eulerian rather than a Lagrangian description.
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