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Solidification along the interface between demixed liquids in monotectic systems
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The steady-state solidification along the liquid-liquid interface in the monotectic system is discussed. A

boundary-integral formulation describing the diffusion in the two liquid phases is given and the corresponding

equations for the three interfaces (two solid-liquid interfaces and one liquid-liquid interface) are solved. Scaling

relations are extracted from the results and supported by analytic arguments in the limit of small deviation from

the monotectic temperature. We present also a complementary phase-field simulation, which proves the stability

of the process.
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I. INTRODUCTION

Alloys exhibiting a monotectic point have been of increas-

ing interest in recent years. Important applications of such

systems comprise bearings, electrical contacts, and switches.

In these systems the three-phase equilibrium consists of two

liquids and one solid phase. The physical processes involved

in the corresponding phase transitions below or above the

monotectic temperature are diverse. In addition to diffusion of

impurities, one can, for example, have to deal with convection

or gravity effects. For a review of the physics in monotectic

systems we refer to Ref. [1]. Here we restrict our interest to

diffusional processes.

At the monotectic temperature the three-phase equilibrium

consists of two liquids L1 and L2 and one solid phase S of

respective concentrations c1, c2, and cS . Below the monotectic

temperature the S + L2 mixture is in stable equilibrium.

The liquid-liquid L1 + L2 equilibrium and the solid-liquid

S + L1 equilibrium are metastable. The phase transition is

controlled by the fluxes in L1 (whose concentration is c1S in

equilibrium with S and c12 in equilibrium with L2) and in L2

(whose concentration is c2S in equilibrium with S and c21 in

equilibrium with L1). In Fig. 1 we present the corresponding

phase diagram.

The similarity between this phase diagram and the eu-

tectic phase diagram makes the classical lamellar growth a

usual process for the solidification of monotectic systems.

A Jackson-Hunt-type theory is then used to describe this

transformation [2]. For hypermonotectic concentrations (i.e.,

larger than the monotectic concentration c1), the temperature

gradient used in directional solidification experiments allows

the system to visit the L1 + L2 two-phase region and a phase

separation of the liquid can appear ahead of the solidification

front. Good qualitative agreement with experiments [3] for

these processes has been provided by phase-field simulations

[4]. In the limit of a vanishing temperature gradient, one can

imagine that the L1 + L2 mixture equilibrates far ahead of the

solidification front and the solid grows along an equilibrium

liquid-liquid interface. This is precisely what we study in

this Rapid Communication, i.e., the isothermal steady-state

growth of a finger of solid phase S along the metastable L1-L2

interface (see Fig. 2). We consider a two-dimensional pattern

with the triple junction as a single point. Asymptotically far

ahead of the triple junction, the L1-L2 interface is aligned with

y, the direction of the velocity υ. The triple junction does not

have the same position in the x direction as the asymptotic

L1-L2 interface, the difference being denoted by a. Moreover,

at the triple junction, there is an angle δ between the L1-L2

interface and the velocity direction. Asymptotically far behind

the triple junction, the solid exhibits an Ivantsov parabolic

shape [5] with, in general, a different Péclet number on each

side of the finger.

To study this pattern, we solve a boundary-integral equation

for each interface (S-L1, S-L2, and L1-L2) that is nontrivial

owing to the different nature of the interfaces (solid-liquid

and liquid-liquid). We use the framework of the one-sided

model together with that of the symmetric model. We present

the solution depending on the driving force, i.e., the deviation

from monotectic temperature, and show that scaling arguments

can be given by the analysis of the equations in the limit of

small driving force. We also present the result of a phase-

field calculation that demonstrates the stability of the process

studied by the boundary-integral equations.

II. BOUNDARY-INTEGRAL FORMULATION

In the symmetric model designed for the solidification of

a pure material, when the diffusion coefficient is equal in the

solid and in the liquid, the diffusion field at the point (x,y) is

calculated through the integral along the interface (boundary

integral) y ′(x ′) of the Green’s function g(x,y; x ′,y ′). In the

one-sided model designed for the solidification of a binary

alloy, when the diffusion coefficient vanishes on the solid side

of the interface, the boundary integral’s kernel depends also on

the value of the diffusion field at the interface. In the symmetric

model, this dependence is absent because of the continuity of

the field (the temperature in most cases). In the most general

case where the diffusion coefficient is finite and differs from

one phase to another, the kernel of the boundary integral also

includes a dependence on the normal derivative of the diffusion

field on both sides of the interface. In the symmetric and one-

sided models this dependence is removed by the incorporation

of the energy-conservation law at the moving interface.

Here we assume that the diffusion coefficient vanishes in

the solid phase S. Hence one integrates along the solid-liquid

interfaces a kernel written in the spirit of the one-sided model.

Moreover, we consider that the diffusion coefficient is D in

050601-11539-3755/2011/83(5)/050601(4) ©2011 American Physical Society



RAPID COMMUNICATIONS
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FIG. 1. Phase diagram of the monotectic system.

L1 and L2 and that the Gibbs-Thomson correction to the

equilibrium concentrations c12 and c21 is the same. These two

assumptions allow us to consider the L1-L2 interface as a

simple source of material in a homogeneous medium that can

be treated in the spirit of the symmetric model.

The concentration at any point of the space (x,y) is

calculated through an integration over the three curves yS1(x),

yS2(x), and x12(y), which are given in units of a in the

following and represent the three interfaces S-L1, S-L2, and

L1-L2 respectively. Setting the origin of coordinates at the

triple junction, the integral reads

I [x,y] =
Pa

2π

c2 − cS

c2 − c1

∫ 0

−∞

dx ′

[

2g(x,y; x ′,y ′

S2)

−

(

�2 −
d0

a
κ[yS2(x ′)]

)

g′(x,y; x ′,y ′

S2)

]

+
Pa

2π

c1 − cS

c2 − c1

∫

∞

0

dx ′

[

2g(x,y; x ′,y ′

S1)

−

(

�1 −
d0

a
κ[yS1(x ′)]

)

g′(x,y; x ′,y ′

S1)

]

+
Pa

π

∫

∞

0

dy ′g(x,y; x ′

12,y
′)

dx ′

12

dy ′
. (1)

The first two terms are the integrals over the solid-liquid

interfaces and involve the Green’s function

g(x,y; x ′,y ′) = exp[−Pa(y − y ′)]K0(Paη)

and its derivative

g′(x,y; x ′,y ′) = exp[−Pa(y − y ′)]

×[K0(Paη) + f (x,y; x ′,y ′)K1(Paη)],

where Pa = aυ/2D is a Pećlet number linked to a, K0

(K1) is the modified Bessel function of zeroth (first) or-

der, η =

√

(x − x ′)2 + (y − y ′)2, and f (x,y; x ′,y ′) = [(x −

x ′)dy ′/dx ′
− (y − y ′)]/η. The third term on the right-hand

side is the integral over the liquid-liquid interface that

only involves the Green’s function, as explained above. The

capillary length d0 is assumed, without loss of generality,

to be equal for all interfaces. Moreover, we assume that

the capillary length is isotropic since, in the presence of

FIG. 2. The solid S grows with velocity υ along the metastable

liquid-liquid L1-L2 interface, which is aligned with υ far ahead of the

triple junction. In the x direction, the triple junction is shifted by a

quantity a from the asymptotic position of the liquid-liquid interface.

At the triple junction the L1-L2 interface adopts an angle δ with the

velocity direction.

the triple junction, the effect of the anisotropy of surface

tension is tiny [6,7]. The curvature is conventionally given

by κ[y(x)] = −(d2y/dx2)/[1 + (dy/dx)2]3/2. �1 = (c1S −

c12)/(c1 − cS) > 0 and �2 = (c2S − c21)/(c2 − cS) > 0 are

dimensionless quantities that are related to a Péclet number

Pi = υρi/2D (i = 1,2) linked to the radius of curvature ρi of

the asymptotically parabolic S-Li front. This relation is due to

Ivantsov:

�i =

√

πPi exp(Pi)erfc(
√

Pi)

∼

√

πPi, �i ≪ 1. (2)

�1 and �2 are given by the phase diagram (Fig. 1). Close to the

monotectic temperature, one can linearize the variations of the

equilibrium concentrations and define � = �1/b1 = �2/b2,

where b1 and b2 are independent of the temperature. � is

proportional to the deviation from the monotectic equilibrium

temperature.

The solution is found self-consistently by assuming local

equilibrium at each interface. In the case of the solid-liquid

interfaces S-Li this means

1

2

ci − cS

c2 − c1

(

�i −
d0

a
κ[ySi(x)]

)

= I [x,ySi(x)], (3)

where the factor 1/2 comes from the integration of a Dirac

distribution over half of the space [8]. At the liquid-liquid

interface, the local equilibrium reads

−
d0

a
κ[x12(y)] = I [x12(y),y]. (4)

At the triple junction, Young’s law imposes two addi-

tional constraints, thus allowing the two unknowns d0/a

and the dimensionless velocity υd0/2D to be determined.

The liquid-liquid interface obeys dx12/dy = − tan(δ) and

the self-selected angle δ (>0 in Fig. 2) is used to
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FIG. 3. Plot of d0/a� with respect to �.

set the slopes: dy1S/dx = 1/ tan(φ − δ) and dy2S/dx =

−1/ tan(φ + δ), where φ > 0 is the contact angle.

One should note that the set of Eqs. (1), (3), and (4) can

be derived more formally using the general framework of

boundary-integral technique separately in L1 and in L2 and

then combining the two results. Note also that the theoretical

framework presented here may be used to describe other types

of phase transitions in monotectic systems such as the lamellar

growth. After discretization of the interfaces, the resulting

set of nonlinear equations is solved by Newton’s method

complemented by Powell’s hybrid method [9,10].

III. RESULTS

The solution to the set of equations given above consists

of the locus of the interfaces and the values of d0/a and

υd0/2D. In this section we present the results obtained for

φ = π/3 and b1 = b2 = 1. The latter choice makes our system

asymptotically symmetric far behind the triple junction with

ρ1 = ρ2 = ρ since �1 = �2 = �. The miscibility gaps are

chosen such that (c2 − cS)/(c2 − c1) = 2 and (c1 − cS)/(c2 −

c1) = 1.

In Figs. 3 and 4 we present the variations of d0/a� and the

dimensionless velocity υd0/2D versus �, respectively. From

these plots one can extract scaling relations in the limit � ≪ 1:

d0/a ∼ � and υd0/2D ∼ �2. This means that Pa ∼ �.

FIG. 4. Plot of the dimensionless velocity υd0/2D with respect

to �.

FIG. 5. Steady-state pattern obtained with (a) boundary-integral

equations and (b) a phase-field simulation.

According to these scaling relations, the behavior of Eq. (2)

for � ≪ 1 means that ρ ∼ d0. When � → 0, the solution in

the neighborhood of the triple junction is selected without

further matching to the Ivantsov parabola. The curvature of

the interfaces is significant only to distances of few a away

from the triple junction. The description of the intermediate

asymptotics is beyond the scope of this paper. Note that the

consistency of the values obtained for d0/a and υd0/2D and

the pattern in the neighborhood of the triple junction has been

tested by changing the size of the system and the boundary

conditions for the last points of the calculation.

Finally, we present in Fig. 5(a) the pattern obtained from

our calculation for � = 0.215. In Fig. 5(b) we present also the

result of a phase-field simulation. Due to the intrinsic limitation

of the parameter space of the phase-field code (which is a

modified version of the model developed in Ref. [11] account-

ing for diffusion in the two liquids), the control parameters

are different from the boundary-integral calculation. Our goal

here is only to provide support for the stability of the growth

along the liquid-liquid interface presented in this paper. Indeed,

while the boundary-integral formulation presented here does

not discriminate stable and unstable solutions, the phase-field

simulation has the advantage of being fully time dependent and

prohibits unstable solutions. In contrast, the boundary-integral

technique (where only the interface’s shape is solved due

to the analytical elimination of the diffusion field) requires

incomparably less CPU time than the phase-field simulations

and facilitates a theoretical analysis.

IV. DISCUSSION

We discuss now the scaling relations that have been

identified in the preceding section for � ≪ 1 :

d0/a ∼ �, υd0/2D ∼ �2. (5)

First, one can define a quantity a2υ/d0D that does not depend

on �. This invariant has the same form as in classical dendritic

growth [12], lamellar eutectic growth [13], or other pattern-

formation processes such as the two-phase finger growth in

eutectic systems [14]. Second, according to the behavior of

the Bessel functions for small arguments, K0(z) ∼ − ln z and

K1(z) ∼ 1/z, the scaling relations presented in Eq. (5) mean
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HÜTER, BOUSSINOT, BRENER, AND TEMKIN PHYSICAL REVIEW E 83, 050601(R) (2011)

that all terms in Eqs. (1), (3), and (4) are, up to logarithmic

corrections, of the same order �.

The scaling relations presented in Eq. (5) imply that

the two length scales a and ρ are such that a/ρ ∼ 1/�.

Here one can make an analogy with the physics of the

two-phase finger in eutectic systems [14] where a lamella

of one solid phase grows together with a second solid phase

exhibiting Ivantsov asymptotics. In this eutectic growth (which

was observed experimentally in a ternary alloy [15]), apart

from the deviation from eutectic temperature, the global

concentration of the system is a second degree of freedom.

This concentration affects only the radius of curvature of the

Ivantsov asymptotics. When the global concentration is of the

order of the liquid concentration at the solid-liquid interfaces

(eutectic concentration), the width of the lamella is much

larger than the Ivantsov radius, similarly to the lateral shift

a of the triple junction herein. One might doubt the existence

of the two-phase finger close to the eutectic concentration since

the lamellar growth is commonly observed in this region of

the phase diagram. Here our phase-field simulations tend to

prove that the solid finger growing along the liquid-liquid

interface is a stable process.

One should note that the process presented in this Rapid

Communication is favorable with respect to the growth of a

solid dendrite in the bulk of one of the two liquid phases (with

a velocity �4). In a phase-field simulation, a nucleus of solid

phase was introduced in the bulk of L1 aside from the L1-L2

interface. The evolution showed the attraction of the solid-

liquid interfaces with the liquid-liquid interface and the

creation of a triple junction.

Note, finally, that in the patterns shown in Fig. 5, the system

is not in full equilibrium far behind the triple junction due to the

absence of diffusion in the solid phase. However, a gradient

of concentration exists in the solid and a slow drift of the

pattern into L1 (which disappears at equilibrium) is expected

far behind the triple junction when one considers the slow

diffusion in the solid.

V. CONCLUSION

In this Rapid Communication we study the two-

dimensional isothermal steady-state growth of the solid phase

along the interface between two demixed liquids (liquid-liquid

interface) in monotectic systems. Far ahead of the triple junc-

tion, the liquid-liquid interface is in a metastable equilibrium

and aligned with the velocity direction. In the vicinity of the

triple junction, the shape of the interfaces is complex and

results from the rejection of impurities from the solid phase

into both liquid phases. We develop a boundary-integral for-

mulation, a hybrid between one-sided and symmetric models,

which describes diffusion in the two liquids. It is not common

practice to use this sort of boundary-integral technique in

the context of solidification. We solve the boundary-integral

equations for the three interfaces and we present our results

depending on the deviation from monotectic temperature �.

In the limit � ≪ 1, one can extract scaling relations from

our calculations that are supported by analytic arguments. The

steady-state velocity scales as �2. The length scale a measures,

relative to the position of the asymptotic liquid-liquid interface,

the shift of the triple junction in the direction perpendicular to

the velocity and scales as 1/�. We complement our results with

a phase-field simulation that proves the stability of the process.

The solidification in the monotectic system presented here is

an attempt to describe theoretically the growth of a solid finger

from a liquid-liquid mixture. We hope our work can stimulate

experimental quantitative study of this phase transformation.

We also suggest that the theoretical framework presented in

this Rapid Communication may be used to describe other types

of phase transitions in monotectic systems such as lamellar

growth.
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