001     19501
005     20180208200636.0
024 7 _ |2 DOI
|a 10.1016/j.jmps.2011.08.007
024 7 _ |2 WOS
|a WOS:000296170800002
037 _ _ |a PreJuSER-19501
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Mechanics
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Bouchbinder, E.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Viscoelastic fracture of biological composites
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
300 _ _ |a 2279 - 2293
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
|0 25203
|y 11
|v 59
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a EB acknowledges a useful discussion with Peter Fratzl and the support of the Harold Perlman Family Foundation and the Robert Rees Applied Research Fund. EAB acknowledges support of the Erna and Jacob Michael visiting professorship funds at Weizmann Institute of Science.
520 _ _ |a Soft constituent materials endow biological composites, such as bone, dentin and nacre, with viscoelastic properties that may play an important role in their remarkable fracture resistance. In this paper we calculate the scaling properties of the quasi-static energy release rate and the viscoelastic contribution to the fracture energy of various biological composites, using both perturbative and non-perturbative approaches. We consider coarse-grained descriptions of three types of anisotropic structures: (i) liquid-crystal-like composites, (ii) stratified composites, (iii) staggered composites, for different crack orientations. In addition, we briefly discuss the implications of anisotropy for fracture criteria. Our analysis highlights the dominant lengthscales and scaling properties of viscoelastic fracture of biological composites. It may be useful for evaluating crack velocity toughening effects and structure-dissipation relations in these materials. (C) 2011 Elsevier Ltd. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Biological material
653 2 0 |2 Author
|a Viscoelastic material
653 2 0 |2 Author
|a Fracture toughness
653 2 0 |2 Author
|a Crack mechanics
653 2 0 |2 Author
|a Anisotropic composite material
700 1 _ |a Brener, E.A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB104034
773 _ _ |a 10.1016/j.jmps.2011.08.007
|g Vol. 59, p. 2279 - 2293
|p 2279 - 2293
|q 59<2279 - 2293
|0 PERI:(DE-600)2012341-3
|t Journal of the mechanics and physics of solids
|v 59
|y 2011
|x 0022-5096
856 7 _ |u http://dx.doi.org/10.1016/j.jmps.2011.08.007
909 C O |o oai:juser.fz-juelich.de:19501
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k PGI-2
|l Theoretische Nanoelektronik
|g PGI
|0 I:(DE-Juel1)PGI-2-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)134355
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21