001     19536
005     20230426083031.0
024 7 _ |2 DOI
|a 10.1103/PhysRevB.84.195440
024 7 _ |2 WOS
|a WOS:000296866000012
024 7 _ |2 Handle
|a 2128/10888
037 _ _ |a PreJuSER-19536
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB73518
|a Soubatch, S.
|b 0
|u FZJ
245 _ _ |a Structure and growth of tetracene on Ag(111)
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 195440
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4919
|a Physical Review B
|v 84
|x 1098-0121
|y 19
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank M. Sokolowski (University of Bonn), B. Voigtlander (Forschungszentrum Julich), G. Meyer (IBM Research, Zurich), and S. Folsch (Paul-Drude-Institute, Berlin) for helpful discussion. This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) via priority program 1121 "Organic field effect transistors: structural and dynamic properties" and the project TA244.
520 _ _ |a The structure of the tetracene/Ag(111) interface in the coverage range theta = 0 to 2.4 ML is studied with scanning tunneling microscopy (STM) at 8 K and with low energy electron diffraction (LEED) at T = 300 ... 100 K. For theta less than or similar to 0.01 ML, one-dimensional (1D) diffusion of single molecules along < 01 (1) over bar >-directions is observed even at 8 K. For 0.1 ML < theta < 0.5 ML molecules are homogeneously distributed over the surface forming a disordered phase (static at T = 8 K, dynamic at T = 25 K), indicating a repulsive intermolecular interaction (delta-phase). For theta greater than or similar to 0.5 ML, local ordering in the commensurate gamma-phase is observed. Further increase of the coverage yields a compressed monolayer (ML) phase (theta = 1 ML) with point-on-line registry (alpha-phase). The interaction between molecules has been calculated with the force-field approach to rationalize the molecular packing motifs in the various phases. Under most circumstances molecule-molecule interactions are repulsive, in agreement with experimental findings. A simulation of the adsorption up to theta = 1 ML according to the random sequential adsorption (RSA) algorithm shows that the disorder-to-order transition from the delta- to gamma-phase occurs close to random close packing (RCP), theta = 0.5-0.6 ML. Since tetracene molecules are a two-dimensional (2D) representation of Onsager's hard rod model, this suggests that this phase transition is driven both energetically and entropically. For theta approximate to 2.23 ML a metastable bilayer phase with point-on-line coincidence is observed (beta-phase). The basic structural unit of this phase is a triplet of molecules that are tilted along the long molecular axis against each other; at least one of these molecules is tilted out of the surface plane. Within the beta-phase a superstructure of alternating rotation domains is observed. This superstructure has a period of 7.4 nm. The molecular packing in the beta-phase resembles the packing in the bulk crystal structure of tetracene, its formation can therefore be interpreted as incipient pseudomorphic growth of tetracene on Ag(111). However, pseudomorphic growth cannot be continued beyond the beta-phase.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2011-11-09
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB93047
|a Kröger, I.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB77884
|a Kumpf, C.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F.S.
|b 3
|u FZJ
773 1 8 |a 10.1103/physrevb.84.195440
|b American Physical Society (APS)
|d 2011-11-09
|n 19
|p 195440
|3 journal-article
|2 Crossref
|t Physical Review B
|v 84
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.84.195440
|g Vol. 84, p. 195440
|0 PERI:(DE-600)2844160-6
|n 19
|q 84<195440
|p 195440
|t Physical review / B
|v 84
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.84.195440
856 4 _ |u https://juser.fz-juelich.de/record/19536/files/PhysRevB.84.195440.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19536/files/PhysRevB.84.195440.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19536/files/PhysRevB.84.195440.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19536/files/PhysRevB.84.195440.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19536/files/PhysRevB.84.195440.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:19536
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|g PGI
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)134392
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1016/j.susc.2004.10.031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1176
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.chemphys.2006.01.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1159455
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.016104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35087532
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.056104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1163338
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.035423
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp709826q
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.036102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssa.200723447
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/12/8/083038
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.085416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.075416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.235405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/1521-4095(200102)13:4<227::AID-ADMA227>3.0.CO;2-P
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S0217984906011189
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/la901760j
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/j.1749-6632.1949.tb27296.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(89)90464-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(03)00592-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1826229
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/11/12/125010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cg101230j
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0730516
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0365110X62000699
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.200602072
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cr941014o
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.121302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.113404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.136101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(87)80476-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.455720
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.177405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/sia.1775
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.245415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0009-2614(99)01457-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 H. Ishii
|y 2002
|2 Crossref
|t Conjugated Polymer and Molecular Interfaces
|o H. Ishii Conjugated Polymer and Molecular Interfaces 2002
999 C 5 |a 10.1103/PhysRevB.76.165436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.028301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.2981
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/12/1/103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(96)00994-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.68.3801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/365035a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.64.051403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/6/23A/008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1305887
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/6/23A/008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.27.1053
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3727/2/6/311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature06981
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 P. Schaaf
|y 1995
|2 Crossref
|t Lecture Notes in Physics: 25 Years of Non-Equilibrium Statistical Mechanics
|o P. Schaaf Lecture Notes in Physics: 25 Years of Non-Equilibrium Statistical Mechanics 1995
999 C 5 |a 10.1103/PhysRevLett.94.026803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.041402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.4464
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(95)00509-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.7656
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1696269
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.37.682
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.49.11297
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/j100785a001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0365110X61002151
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2432410
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21