001     19583
005     20180208213433.0
024 7 _ |2 DOI
|a 10.1143/APEX.4.043003
024 7 _ |2 WOS
|a WOS:000289344800012
037 _ _ |a PreJuSER-19583
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Fujii, H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Interstitial Donor Codoping Method in (Ga,Mn)As to Increase Solubility of Mn and Curie Temperature
260 _ _ |a Tokyo
|b ¯Oy¯o Butsuri-Gakkai
|c 2011
300 _ _ |a 043003
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Express
|x 1882-0778
|0 24061
|y 4
|v 4
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors would like to express their gratitude for the financial support from a Grant-in-Aid for Scientific Research for young researchers and on Innovative Areas "Materials Design through Computics: Complex Correlation and Non-Equilibrium Dynamics", a Global Center of Excellence program "Core Research and Engineering of Advanced Materials-Interdisciplinary Education Center for Materials Science", and the Japan Science and Technology Agency Strategic Japanese-German Cooperative Program "Computational design and evaluation of spintronics materials".
520 _ _ |a Based on first principles calculations, we propose a solubility control method of magnetic impurities in dilute magnetic semiconductors (DMSs). The low solubility of Mn in (Ga, Mn)As is experimentally and theoretically known. We show that donor atoms, such as Li, introduced at the interstitial sites in GaAs enhance the solubility of Mn. As a result, Mn can be doped to more than 20% in GaAs in the thermal equilibrium condition. The same effect can be seen when we dope Mn in GaAs with other interstitial donors, such as H, Na, K, Be, Mg, Ca, Cu, and Ag. (C) 2011 The Japan Society of Applied Physics
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Sato, K.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Bergqvist, L.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Dederichs, P.H.
|b 3
|u FZJ
|0 P:(DE-Juel1)130612
700 1 _ |a Katayama-Yoshida, H.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1143/APEX.4.043003
|g Vol. 4, p. 043003
|p 043003
|q 4<043003
|0 PERI:(DE-600)2417569-9
|t Applied physics express
|v 4
|y 2011
|x 1882-0778
856 7 _ |u http://dx.doi.org/10.1143/APEX.4.043003
909 C O |o oai:juser.fz-juelich.de:19583
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k PGI-2
|l Theoretische Nanoelektronik
|g PGI
|0 I:(DE-Juel1)PGI-2-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)134445
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21