000019584 001__ 19584
000019584 005__ 20230426083031.0
000019584 0247_ $$2DOI$$a10.1103/PhysRevB.83.165201
000019584 0247_ $$2WOS$$aWOS:000289229600003
000019584 0247_ $$2Handle$$a2128/10887
000019584 037__ $$aPreJuSER-19584
000019584 041__ $$aeng
000019584 082__ $$a530
000019584 084__ $$2WoS$$aPhysics, Condensed Matter
000019584 1001_ $$0P:(DE-HGF)0$$aBergqvist, L.$$b0
000019584 245__ $$aComputational materials design for high-T(c) (Ga,Mn)As with Li codoping
000019584 260__ $$aCollege Park, Md.$$bAPS$$c2011
000019584 300__ $$a165201
000019584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019584 3367_ $$2DataCite$$aOutput Types/Journal article
000019584 3367_ $$00$$2EndNote$$aJournal Article
000019584 3367_ $$2BibTeX$$aARTICLE
000019584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019584 3367_ $$2DRIVER$$aarticle
000019584 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y16
000019584 500__ $$3POF3_Assignment on 2016-02-29
000019584 500__ $$aL.B. acknowledges financial support from the European Commission within the Marie Curie Actions under Contract No. PERG-GA-2008-239411. K.S. and H.K.-Y. acknowledge the financial support from the Grant-in-Aid for Scientific Research for young researchers and on Innovative Areas "Materials Design through Computics: Complex Correlation and Non-Equilibrium Dynamics," the Global COE Program "Core Research and Engineering of Advanced Materials-Interdisciplinary Education Center for Materials Science," and Strategic Japanese-German Cooperative Program "Computational design and evaluation of spintronics materials," JST.
000019584 520__ $$aBased on first-principles calculations and kinetic Monte Carlo simulations, we design a realistic and practical codoping technique for increasing the concentration of Mn atoms in GaAs and realizing high Curie temperatures in (Ga, Mn) As. We found that using codoping of Li interstitial atoms during the crystal growth has two great advantages. First, due to lower formation energy of Li interstitials compared to Mn interstitials, Li prevents formation of unwanted Mn interstitials. Second, Li interstitials can be removed by using post-growth annealing at low temperatures. This codoping method offers a general strategy to go far beyond the solubility limit and it should be applicable also to other diluted magnetic semiconductor systems.
000019584 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019584 542__ $$2Crossref$$i2011-04-07$$uhttp://link.aps.org/licenses/aps-default-license
000019584 588__ $$aDataset connected to Web of Science
000019584 650_7 $$2WoSType$$aJ
000019584 7001_ $$0P:(DE-HGF)0$$aSato, K.$$b1
000019584 7001_ $$0P:(DE-HGF)0$$aKatayama-Yoshida, H.$$b2
000019584 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P.H.$$b3$$uFZJ
000019584 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.165201$$bAmerican Physical Society (APS)$$d2011-04-07$$n16$$p165201$$tPhysical Review B$$v83$$x1098-0121$$y2011
000019584 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.165201$$gVol. 83, p. 165201$$n16$$p165201$$q83<165201$$tPhysical review / B$$v83$$x1098-0121$$y2011
000019584 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.165201
000019584 8564_ $$uhttps://juser.fz-juelich.de/record/19584/files/PhysRevB.83.165201.pdf$$yOpenAccess
000019584 8564_ $$uhttps://juser.fz-juelich.de/record/19584/files/PhysRevB.83.165201.gif?subformat=icon$$xicon$$yOpenAccess
000019584 8564_ $$uhttps://juser.fz-juelich.de/record/19584/files/PhysRevB.83.165201.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019584 8564_ $$uhttps://juser.fz-juelich.de/record/19584/files/PhysRevB.83.165201.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000019584 8564_ $$uhttps://juser.fz-juelich.de/record/19584/files/PhysRevB.83.165201.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019584 909CO $$ooai:juser.fz-juelich.de:19584$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000019584 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000019584 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019584 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000019584 9141_ $$y2011
000019584 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019584 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019584 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$gPGI$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000019584 970__ $$aVDB:(DE-Juel1)134446
000019584 980__ $$aVDB
000019584 980__ $$aConvertedRecord
000019584 980__ $$ajournal
000019584 980__ $$aI:(DE-Juel1)PGI-2-20110106
000019584 980__ $$aUNRESTRICTED
000019584 9801_ $$aFullTexts
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.037201
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1571666
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1352701
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1398619
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.137202
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.201202
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.1633
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2715095
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2713176
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2992200
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2927481
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3259821
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2837469
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.9506
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.067202
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.024202
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.353
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2841941
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3200961
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.177204
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/48/003
000019584 999C5 $$1M. E. J. Newman$$2Crossref$$oM. E. J. Newman Monte Carlo Methods in Statistical Physics 1999$$tMonte Carlo Methods in Statistical Physics$$y1999
000019584 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.16.4769