000019586 001__ 19586
000019586 005__ 20230426083031.0
000019586 0247_ $$2DOI$$a10.1103/PhysRevB.83.241407
000019586 0247_ $$2WOS$$aWOS:000292128800002
000019586 0247_ $$2Handle$$a2128/10886
000019586 0247_ $$2altmetric$$aaltmetric:2651728
000019586 037__ $$aPreJuSER-19586
000019586 041__ $$aeng
000019586 082__ $$a530
000019586 084__ $$2WoS$$aPhysics, Condensed Matter
000019586 1001_ $$0P:(DE-HGF)0$$aVolokitin, A. I.$$b0
000019586 245__ $$aNear-field radiative heat transfer between closely spaced graphene and amorphous SiO2
000019586 260__ $$aCollege Park, Md.$$bAPS$$c2011
000019586 300__ $$a241407
000019586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019586 3367_ $$2DataCite$$aOutput Types/Journal article
000019586 3367_ $$00$$2EndNote$$aJournal Article
000019586 3367_ $$2BibTeX$$aARTICLE
000019586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019586 3367_ $$2DRIVER$$aarticle
000019586 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y24
000019586 500__ $$3POF3_Assignment on 2016-02-29
000019586 500__ $$aA.I.V acknowledges financial support from the Russian Foundation for Basic Research (Grant No. N 10-02-00297-a) and ESF within the project "New Trends and Applications of the Casimir Effect."
000019586 520__ $$aWe study the near-field radiative energy transfer between graphene and an amorphous SiO2 substrate. In comparison with the existing theories of near-field radiative heat transfer our theory takes into account that the free carriers in graphene are moving relative to the substrate with a drift velocity v. In this case the heat flux is determined by both thermal and quantum fluctuations. We find that quantum fluctuations give an important contribution to the radiative energy transfer for low temperatures and high electric field (large drift velocities). For nonsuspended graphene the near-field radiative energy transfer gives a significant contribution to the heat transfer in addition to the contribution from phononic coupling. For suspended graphene (large separation) the corresponding radiative energy transfer coefficient at a nanoscale gap is similar to 3 orders of magnitude larger than radiative heat transfer coefficient of the blackbody radiation limit.
000019586 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019586 542__ $$2Crossref$$i2011-06-27$$uhttp://link.aps.org/licenses/aps-default-license
000019586 588__ $$aDataset connected to Web of Science
000019586 650_7 $$2WoSType$$aJ
000019586 7001_ $$0P:(DE-Juel1)130885$$aPersson, B.N.J.$$b1$$uFZJ
000019586 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.241407$$bAmerican Physical Society (APS)$$d2011-06-27$$n24$$p241407$$tPhysical Review B$$v83$$x1098-0121$$y2011
000019586 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.241407$$gVol. 83, p. 241407$$n24$$p241407$$q83<241407$$tPhysical review / B$$v83$$x1098-0121$$y2011
000019586 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.241407
000019586 8564_ $$uhttps://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.pdf$$yOpenAccess
000019586 8564_ $$uhttps://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.gif?subformat=icon$$xicon$$yOpenAccess
000019586 8564_ $$uhttps://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019586 8564_ $$uhttps://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000019586 8564_ $$uhttps://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019586 909CO $$ooai:juser.fz-juelich.de:19586$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000019586 9141_ $$y2011
000019586 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000019586 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019586 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000019586 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019586 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019586 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000019586 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000019586 970__ $$aVDB:(DE-Juel1)134448
000019586 980__ $$aVDB
000019586 980__ $$aConvertedRecord
000019586 980__ $$ajournal
000019586 980__ $$aI:(DE-Juel1)IAS-1-20090406
000019586 980__ $$aI:(DE-Juel1)PGI-1-20110106
000019586 980__ $$aUNRESTRICTED
000019586 9801_ $$aFullTexts
000019586 981__ $$aI:(DE-Juel1)PGI-1-20110106
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.4.3303
000019586 999C5 $$1S. M. Rytov$$2Crossref$$oS. M. Rytov Theory of Electrical Fluctuation and Thermal Radiation 1953$$tTheory of Electrical Fluctuation and Thermal Radiation$$y1953
000019586 999C5 $$1M. L. Levin$$2Crossref$$oM. L. Levin Theory of Eqilibrium Thermal Fluctuations in Electrodynamics 1967$$tTheory of Eqilibrium Thermal Fluctuations in Electrodynamics$$y1967
000019586 999C5 $$1S. M. Rytov$$2Crossref$$oS. M. Rytov Principles of Statistical Radiophyics 1989$$tPrinciples of Statistical Radiophyics$$y1989
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl901208v
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2009.144
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.surfrep.2004.12.002
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.79.1291
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.155437
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1102896
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04233
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1849
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/91/56001
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/46/462201
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/4/045009
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3245315
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.094502
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl803835z
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.195442
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/13/5/307
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/8/12/318
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.205418
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2736267
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2008.58
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl803883h
000019586 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05545