Home > Publications database > Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2 > print |
001 | 19586 | ||
005 | 20230426083031.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.83.241407 |2 DOI |
024 | 7 | _ | |a WOS:000292128800002 |2 WOS |
024 | 7 | _ | |a 2128/10886 |2 Handle |
024 | 7 | _ | |a altmetric:2651728 |2 altmetric |
037 | _ | _ | |a PreJuSER-19586 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Condensed Matter |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Volokitin, A. I. |b 0 |
245 | _ | _ | |a Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2 |
260 | _ | _ | |a College Park, Md. |b APS |c 2011 |
300 | _ | _ | |a 241407 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 4919 |a Physical Review B |v 83 |x 1098-0121 |y 24 |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
500 | _ | _ | |a A.I.V acknowledges financial support from the Russian Foundation for Basic Research (Grant No. N 10-02-00297-a) and ESF within the project "New Trends and Applications of the Casimir Effect." |
520 | _ | _ | |a We study the near-field radiative energy transfer between graphene and an amorphous SiO2 substrate. In comparison with the existing theories of near-field radiative heat transfer our theory takes into account that the free carriers in graphene are moving relative to the substrate with a drift velocity v. In this case the heat flux is determined by both thermal and quantum fluctuations. We find that quantum fluctuations give an important contribution to the radiative energy transfer for low temperatures and high electric field (large drift velocities). For nonsuspended graphene the near-field radiative energy transfer gives a significant contribution to the heat transfer in addition to the contribution from phononic coupling. For suspended graphene (large separation) the corresponding radiative energy transfer coefficient at a nanoscale gap is similar to 3 orders of magnitude larger than radiative heat transfer coefficient of the blackbody radiation limit. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF) |a Grundlagen für zukünftige Informationstechnologien |c P42 |x 0 |
542 | _ | _ | |i 2011-06-27 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
700 | 1 | _ | |0 P:(DE-Juel1)130885 |a Persson, B.N.J. |b 1 |u FZJ |
773 | 1 | 8 | |a 10.1103/physrevb.83.241407 |b American Physical Society (APS) |d 2011-06-27 |n 24 |p 241407 |3 journal-article |2 Crossref |t Physical Review B |v 83 |y 2011 |x 1098-0121 |
773 | _ | _ | |a 10.1103/PhysRevB.83.241407 |g Vol. 83, p. 241407 |0 PERI:(DE-600)2844160-6 |n 24 |q 83<241407 |p 241407 |t Physical review / B |v 83 |y 2011 |x 1098-0121 |
856 | 7 | _ | |u http://dx.doi.org/10.1103/PhysRevB.83.241407 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/19586/files/PhysRevB.83.241407.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:19586 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK412 |a DE-HGF |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
914 | 1 | _ | |y 2011 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |g IAS |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |z IFF-1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |g PGI |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)134448 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
999 | C | 5 | |a 10.1103/PhysRevB.4.3303 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 S. M. Rytov |y 1953 |2 Crossref |t Theory of Electrical Fluctuation and Thermal Radiation |o S. M. Rytov Theory of Electrical Fluctuation and Thermal Radiation 1953 |
999 | C | 5 | |1 M. L. Levin |y 1967 |2 Crossref |t Theory of Eqilibrium Thermal Fluctuations in Electrodynamics |o M. L. Levin Theory of Eqilibrium Thermal Fluctuations in Electrodynamics 1967 |
999 | C | 5 | |1 S. M. Rytov |y 1989 |2 Crossref |t Principles of Statistical Radiophyics |o S. M. Rytov Principles of Statistical Radiophyics 1989 |
999 | C | 5 | |a 10.1021/nl901208v |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nphoton.2009.144 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.surfrep.2004.12.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.79.1291 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.78.155437 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1102896 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature04233 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nmat1849 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1209/0295-5075/91/56001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-8984/22/46/462201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-8984/23/4/045009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3245315 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.106.094502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl803835z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.81.195442 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-8984/13/5/307 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/8/12/318 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.75.205418 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.2736267 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nnano.2008.58 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl803883h |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature05545 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|