001     19591
005     20180208201527.0
024 7 _ |2 pmid
|a pmid:21406883
024 7 _ |2 DOI
|a 10.1088/0953-8984/23/4/045009
024 7 _ |2 WOS
|a WOS:000286142800010
037 _ _ |a PreJuSER-19591
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)130885
|a Persson, B. N. J.
|b 0
|u FZJ
245 _ _ |a Phononic heat transfer across an interface: thermal boundary resistance
260 _ _ |a Bristol
|b IOP Publ.
|c 2011
300 _ _ |a 045009
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3703
|a Journal of Physics: Condensed Matter
|v 23
|x 0953-8984
|y 4
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank P Avouris, Ch Woll, G Benedek and the authors of [21] for useful communication. BNJP was supported by Invitation Fellowship Programs for Research in Japan from Japan Society of Promotion of Science (JSPS). This work, as part of the European Science Foundation EUROCORES Program FANAS, was supported by funds from the DFG and the EC Sixth Framework Program, under contract ERAS-CT-2003-980409. HU was supported by the Grant-in-Aid for Scientific Research B (No. 21310086) from JSPS. AIV was supported by Russian Foundation for Basic Research (Grant No. 10-02-00297-a) and by DFG.
520 _ _ |a We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Volokitin, A. I.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Ueba, H.
|b 2
773 _ _ |0 PERI:(DE-600)1472968-4
|a 10.1088/0953-8984/23/4/045009
|g Vol. 23, p. 045009
|p 045009
|q 23<045009
|t Journal of physics / Condensed matter
|v 23
|x 0953-8984
|y 2011
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/23/4/045009
909 C O |o oai:juser.fz-juelich.de:19591
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
970 _ _ |a VDB:(DE-Juel1)134452
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21