000019626 001__ 19626
000019626 005__ 20210129210725.0
000019626 0247_ $$2pmid$$apmid:22209784
000019626 0247_ $$2DOI$$a10.1016/j.neuroimage.2011.12.032
000019626 0247_ $$2WOS$$aWOS:000301218700016
000019626 0247_ $$2altmetric$$aaltmetric:21807490
000019626 037__ $$aPreJuSER-19626
000019626 041__ $$aeng
000019626 082__ $$a610
000019626 1001_ $$0P:(DE-HGF)0$$aEulenberg, P.Z.$$b0
000019626 245__ $$aMeta-analytical definition and functional connectivity of the human vestibular cortex
000019626 260__ $$aOrlando, Fla.$$bAcademic Press$$c2012
000019626 300__ $$a162 - 169
000019626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019626 3367_ $$2DataCite$$aOutput Types/Journal article
000019626 3367_ $$00$$2EndNote$$aJournal Article
000019626 3367_ $$2BibTeX$$aARTICLE
000019626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019626 3367_ $$2DRIVER$$aarticle
000019626 440_0 $$04545$$aNeuroImage$$v60$$x1053-8119
000019626 500__ $$aRecord converted from VDB: 12.11.2012
000019626 520__ $$aContrary to most other sensory systems, no consensus has been reached within the scientific community about the exact locations and functions of human cortical areas processing vestibular information. Metaanalytical modelling using activation likelihood estimation (ALE) for the integration of neuroimaging results has already been successfully applied to several distinct tasks, thereby revealing the cortical localization of cognitive functions. We used the same algorithm and technique with all available and suitable PET and fMRI studies employing a vestibular stimulus. Most consistently across 28 experiments vestibular stimuli evoked activity in the right hemispheric parietal opercular area OP 2 implicating it as the core region for vestibular processing. Furthermore, we took our primary results as a seeding point and fed them into a functional connectivity analysis based on resting-state oscillations in 100 healthy subjects. This subsequent calculation confirmed direct connections of the area OP 2 with every other region found in the meta-analysis, in particular temporo-parietal regions, premotor cortex, and the midcingulate gyrus. Thus revealing a joint vestibular network in accordance with a concept from animal literature termed the inner vestibular circle. Moreover, there was also a significant vestibular connectivity overlap with frontal but not parietal cortical centres responsible for the generation of saccadic eye movements, likely to be involved in nystagmus fast phase generation. This was shown in an additional ocular motor meta-analysis. We conclude that the cytoarchitectonic area OP 2 in the parietal operculum, embedded in a joint vestibular network, should be the primary candidate for the human vestibular cortex. This area may represent the human homologue to the vestibular area PIVC as proposed by Guldin and Grüsser in non-human primates.
000019626 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000019626 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000019626 588__ $$aDataset connected to Pubmed
000019626 650_2 $$2MeSH$$aAnimals
000019626 650_2 $$2MeSH$$aBrain Mapping
000019626 650_2 $$2MeSH$$aHumans
000019626 650_2 $$2MeSH$$aSomatosensory Cortex: physiology
000019626 650_2 $$2MeSH$$aVestibule, Labyrinth: physiology
000019626 7001_ $$0P:(DE-Juel1)VDB53458$$aCaspers, S.$$b1$$uFZJ
000019626 7001_ $$0P:(DE-Juel1)VDB98850$$aRoski, C.$$b2$$uFZJ
000019626 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b3$$uFZJ
000019626 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2011.12.032$$gVol. 60, p. 162 - 169$$p162 - 169$$q60<162 - 169$$tNeuroImage$$v60$$x1053-8119$$y2012
000019626 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2011.12.032
000019626 909CO $$ooai:juser.fz-juelich.de:19626$$pVDB
000019626 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019626 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019626 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019626 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000019626 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000019626 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000019626 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000019626 9141_ $$y2012
000019626 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000019626 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000019626 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000019626 970__ $$aVDB:(DE-Juel1)134512
000019626 980__ $$aVDB
000019626 980__ $$aConvertedRecord
000019626 980__ $$ajournal
000019626 980__ $$aI:(DE-Juel1)INM-2-20090406
000019626 980__ $$aUNRESTRICTED