001     19626
005     20210129210725.0
024 7 _ |2 pmid
|a pmid:22209784
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.12.032
024 7 _ |2 WOS
|a WOS:000301218700016
024 7 _ |a altmetric:21807490
|2 altmetric
037 _ _ |a PreJuSER-19626
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Eulenberg, P.Z.
|b 0
245 _ _ |a Meta-analytical definition and functional connectivity of the human vestibular cortex
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2012
300 _ _ |a 162 - 169
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 60
|x 1053-8119
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Contrary to most other sensory systems, no consensus has been reached within the scientific community about the exact locations and functions of human cortical areas processing vestibular information. Metaanalytical modelling using activation likelihood estimation (ALE) for the integration of neuroimaging results has already been successfully applied to several distinct tasks, thereby revealing the cortical localization of cognitive functions. We used the same algorithm and technique with all available and suitable PET and fMRI studies employing a vestibular stimulus. Most consistently across 28 experiments vestibular stimuli evoked activity in the right hemispheric parietal opercular area OP 2 implicating it as the core region for vestibular processing. Furthermore, we took our primary results as a seeding point and fed them into a functional connectivity analysis based on resting-state oscillations in 100 healthy subjects. This subsequent calculation confirmed direct connections of the area OP 2 with every other region found in the meta-analysis, in particular temporo-parietal regions, premotor cortex, and the midcingulate gyrus. Thus revealing a joint vestibular network in accordance with a concept from animal literature termed the inner vestibular circle. Moreover, there was also a significant vestibular connectivity overlap with frontal but not parietal cortical centres responsible for the generation of saccadic eye movements, likely to be involved in nystagmus fast phase generation. This was shown in an additional ocular motor meta-analysis. We conclude that the cytoarchitectonic area OP 2 in the parietal operculum, embedded in a joint vestibular network, should be the primary candidate for the human vestibular cortex. This area may represent the human homologue to the vestibular area PIVC as proposed by Guldin and GrĂ¼sser in non-human primates.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Somatosensory Cortex: physiology
650 _ 2 |2 MeSH
|a Vestibule, Labyrinth: physiology
700 1 _ |0 P:(DE-Juel1)VDB53458
|a Caspers, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB98850
|a Roski, C.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S.B.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.12.032
|g Vol. 60, p. 162 - 169
|p 162 - 169
|q 60<162 - 169
|t NeuroImage
|v 60
|x 1053-8119
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2011.12.032
909 C O |o oai:juser.fz-juelich.de:19626
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)134512
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21