000019627 001__ 19627 000019627 005__ 20210129210725.0 000019627 0247_ $$2pmid$$apmid:22182770 000019627 0247_ $$2DOI$$a10.1016/j.neuroimage.2011.12.007 000019627 0247_ $$2WOS$$aWOS:000301218700057 000019627 037__ $$aPreJuSER-19627 000019627 041__ $$aeng 000019627 082__ $$a610 000019627 1001_ $$0P:(DE-Juel1)131699$$aMüller, V.I.$$b0$$uFZJ 000019627 245__ $$aCrossmodal interactions in audiovisual emotion processing 000019627 260__ $$aOrlando, Fla.$$bAcademic Press$$c2012 000019627 300__ $$a553 - 561 000019627 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000019627 3367_ $$2DataCite$$aOutput Types/Journal article 000019627 3367_ $$00$$2EndNote$$aJournal Article 000019627 3367_ $$2BibTeX$$aARTICLE 000019627 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000019627 3367_ $$2DRIVER$$aarticle 000019627 440_0 $$04545$$aNeuroImage$$v60$$x1053-8119$$y1 000019627 500__ $$aRecord converted from VDB: 12.11.2012 000019627 520__ $$aEmotion in daily life is often expressed in a multimodal fashion. Consequently emotional information from one modality can influence processing in another. In a previous fMRI study we assessed the neural correlates of audio-visual integration and found that activity in the left amygdala is significantly attenuated when a neutral stimulus is paired with an emotional one compared to conditions where emotional stimuli were present in both channels. Here we used dynamic causal modelling to investigate the effective connectivity in the neuronal network underlying this emotion presence congruence effect. Our results provided strong evidence in favor of a model family, differing only in the interhemispheric interactions. All winning models share a connection from the bilateral fusiform gyrus (FFG) into the left amygdala and a non-linear modulatory influence of bilateral posterior superior temporal sulcus (pSTS) on these connections. This result indicates that the pSTS not only integrates multi-modal information from visual and auditory regions (as reflected in our model by significant feed-forward connections) but also gates the influence of the sensory information on the left amygdala, leading to attenuation of amygdala activity when a neutral stimulus is integrated. Moreover, we found a significant lateralization of the FFG due to stronger driving input by the stimuli (faces) into the right hemisphere, whereas such lateralization was not present for sound-driven input into the superior temporal gyrus. In summary, our data provides further evidence for a rightward lateralization of the FFG and in particular for a key role of the pSTS in the integration and gating of audio-visual emotional information. 000019627 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0 000019627 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1 000019627 588__ $$aDataset connected to Pubmed 000019627 650_2 $$2MeSH$$aAuditory Perception: physiology 000019627 650_2 $$2MeSH$$aBrain: physiology 000019627 650_2 $$2MeSH$$aEmotions: physiology 000019627 650_2 $$2MeSH$$aFemale 000019627 650_2 $$2MeSH$$aHumans 000019627 650_2 $$2MeSH$$aMagnetic Resonance Imaging 000019627 650_2 $$2MeSH$$aMale 000019627 650_2 $$2MeSH$$aVisual Perception: physiology 000019627 7001_ $$0P:(DE-Juel1)131855$$aCieslik, E.C.$$b1$$uFZJ 000019627 7001_ $$0P:(DE-HGF)0$$aTuretsky, B.I.$$b2 000019627 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b3$$uFZJ 000019627 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2011.12.007$$gVol. 60, p. 553 - 561$$p553 - 561$$q60<553 - 561$$tNeuroImage$$v60$$x1053-8119$$y2012 000019627 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2011.12.007 000019627 909CO $$ooai:juser.fz-juelich.de:19627$$pVDB 000019627 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000019627 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000019627 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000019627 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000019627 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000019627 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000019627 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000019627 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000019627 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000019627 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000019627 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000019627 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000019627 9141_ $$y2012 000019627 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000019627 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1 000019627 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0 000019627 970__ $$aVDB:(DE-Juel1)134513 000019627 980__ $$aVDB 000019627 980__ $$aConvertedRecord 000019627 980__ $$ajournal 000019627 980__ $$aI:(DE-Juel1)INM-2-20090406 000019627 980__ $$aUNRESTRICTED