000019627 001__ 19627
000019627 005__ 20210129210725.0
000019627 0247_ $$2pmid$$apmid:22182770
000019627 0247_ $$2DOI$$a10.1016/j.neuroimage.2011.12.007
000019627 0247_ $$2WOS$$aWOS:000301218700057
000019627 037__ $$aPreJuSER-19627
000019627 041__ $$aeng
000019627 082__ $$a610
000019627 1001_ $$0P:(DE-Juel1)131699$$aMüller, V.I.$$b0$$uFZJ
000019627 245__ $$aCrossmodal interactions in audiovisual emotion processing
000019627 260__ $$aOrlando, Fla.$$bAcademic Press$$c2012
000019627 300__ $$a553 - 561
000019627 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019627 3367_ $$2DataCite$$aOutput Types/Journal article
000019627 3367_ $$00$$2EndNote$$aJournal Article
000019627 3367_ $$2BibTeX$$aARTICLE
000019627 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019627 3367_ $$2DRIVER$$aarticle
000019627 440_0 $$04545$$aNeuroImage$$v60$$x1053-8119$$y1
000019627 500__ $$aRecord converted from VDB: 12.11.2012
000019627 520__ $$aEmotion in daily life is often expressed in a multimodal fashion. Consequently emotional information from one modality can influence processing in another. In a previous fMRI study we assessed the neural correlates of audio-visual integration and found that activity in the left amygdala is significantly attenuated when a neutral stimulus is paired with an emotional one compared to conditions where emotional stimuli were present in both channels. Here we used dynamic causal modelling to investigate the effective connectivity in the neuronal network underlying this emotion presence congruence effect. Our results provided strong evidence in favor of a model family, differing only in the interhemispheric interactions. All winning models share a connection from the bilateral fusiform gyrus (FFG) into the left amygdala and a non-linear modulatory influence of bilateral posterior superior temporal sulcus (pSTS) on these connections. This result indicates that the pSTS not only integrates multi-modal information from visual and auditory regions (as reflected in our model by significant feed-forward connections) but also gates the influence of the sensory information on the left amygdala, leading to attenuation of amygdala activity when a neutral stimulus is integrated. Moreover, we found a significant lateralization of the FFG due to stronger driving input by the stimuli (faces) into the right hemisphere, whereas such lateralization was not present for sound-driven input into the superior temporal gyrus. In summary, our data provides further evidence for a rightward lateralization of the FFG and in particular for a key role of the pSTS in the integration and gating of audio-visual emotional information.
000019627 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000019627 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000019627 588__ $$aDataset connected to Pubmed
000019627 650_2 $$2MeSH$$aAuditory Perception: physiology
000019627 650_2 $$2MeSH$$aBrain: physiology
000019627 650_2 $$2MeSH$$aEmotions: physiology
000019627 650_2 $$2MeSH$$aFemale
000019627 650_2 $$2MeSH$$aHumans
000019627 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000019627 650_2 $$2MeSH$$aMale
000019627 650_2 $$2MeSH$$aVisual Perception: physiology
000019627 7001_ $$0P:(DE-Juel1)131855$$aCieslik, E.C.$$b1$$uFZJ
000019627 7001_ $$0P:(DE-HGF)0$$aTuretsky, B.I.$$b2
000019627 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b3$$uFZJ
000019627 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2011.12.007$$gVol. 60, p. 553 - 561$$p553 - 561$$q60<553 - 561$$tNeuroImage$$v60$$x1053-8119$$y2012
000019627 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2011.12.007
000019627 909CO $$ooai:juser.fz-juelich.de:19627$$pVDB
000019627 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019627 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019627 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019627 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019627 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019627 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019627 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019627 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019627 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000019627 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000019627 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000019627 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000019627 9141_ $$y2012
000019627 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000019627 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000019627 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000019627 970__ $$aVDB:(DE-Juel1)134513
000019627 980__ $$aVDB
000019627 980__ $$aConvertedRecord
000019627 980__ $$ajournal
000019627 980__ $$aI:(DE-Juel1)INM-2-20090406
000019627 980__ $$aUNRESTRICTED